
1. Kiến thức cần nhớ
a) Định nghĩa Acgumen của số phức.
- Điểm \(M \ne O\) biểu diễn số phức \(z = a + bi\left( {a,b \in R} \right)\) thì số đo mỗi góc lượng giác tia đầu là \(Ox\) và tia cuối \(OM\) được gọi là acgumen của số phức \(z\).
- Nếu \(\alpha \) là một acgumen của \(z\) thì \(\alpha + k2\pi \) cũng là một acgumen của \(z\) với mỗi \(k \in Z\).
b) Khái niệm về dạng lượng giác của số phức
- Số phức \(z = a + bi\) là dạng đại số của \(z\).
- Số phức \(z = r\left( {\cos \varphi + i\sin \varphi } \right)\) là dạng lượng giác của \(z\), ở đó:
+ \(r\) là mô đun của số phức.
+ \(\varphi \) là acgumen của số phức.
c) Các phép toán với số phức dạng lượng giác:
Cho hai số phức \({z_1} = {r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right),{z_2} = {r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right)\). Khi đó:
\(\begin{array}{l}{z_1} \pm {z_2} = {r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right) \pm {r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right) \\ = \left( {{r_1}\cos {\varphi _1} \pm {r_2}\cos {\varphi _2}} \right) + i\left( {{r_1}\sin {\varphi _1} \pm {r_2}\sin {\varphi _2}} \right)\\{z_1}.{z_2} = {r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right).{r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right) \\ = {r_1}{r_2}\left[ {\cos \left( {{\varphi _1} + {\varphi _2}} \right) + i\sin \left( {{\varphi _1} + {\varphi _2}} \right)} \right]\\\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{{r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right)}}{{{r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right)}} = \dfrac{{{r_1}}}{{{r_2}}}\left[ {\cos \left( {{\varphi _1} - {\varphi _2}} \right) + i\sin \left( {{\varphi _1} - {\varphi _2}} \right)} \right]\end{array}\)
d) Công thức Moivre:
Cho số phức \(z = r\left( {\cos \varphi + i\sin \varphi } \right)\). Khi đó:
\({z^n} = {\left[ {r\left( {\cos \varphi + i\sin \varphi } \right)} \right]^n} = {r^n}\left( {\cos n\varphi + i\sin n\varphi } \right)\)
Dạng 1: Chuyển số phức từ dạng đại số sang dạng lượng giác.
Cho số phức \(z = a + bi\), viết \(z\) dưới dạng \(z = r\left( {\cos \varphi + i\sin \varphi } \right)\)
Phương pháp:
- Bước 1: Tính \(r = \sqrt {{a^2} + {b^2}} \)
- Bước 2: Tính \(\varphi \) thỏa mãn \(\left\{ \begin{array}{l}\cos \varphi = \dfrac{a}{r}\\\sin \varphi = \dfrac{b}{r}\end{array} \right.\)
Dạng 2: Tính giá trị, rút gọn biểu thức.
Phương pháp:
Sử dụng các phép toán cộng, trừ, nhân, chia số phức, công thức Moivre để tính giá trị và rút gọn các biểu thức.
Giải bài 6 trang 144 SGK Giải tích 12. Trong các kết luận sau, kết luận nào là sai?
Giải bài 5 trang 144 SGK Giải tích 12. Biết rằng nghịch đảo của số phức z bằng số phức liên hợp của nó, trong các kết luận sau, kết luận nào là đúng?
Giải bài 4 trang 144 SGK Giải tích 12. Đẳng thức nào trong các đẳng thức sau là đúng?
Giải bài 3 trang 144 SGK Giải tích 12. Đẳng thức nào trong các đẳng thức sau là đúng?
Giải bài 2 trang 144 SGK Giải tích 12. Số nào trong các số sau là số thuần ảo?
Giải bài 1 trang 144 SGK Giải tích 12. Số nào trong các số sau là số thực?
Cho hai số phức z1, z2. Biết rằng z1 + z2 và z1. z2 là hai số thực. Chứng minh rằng z1, z2 là hai nghiệm của một phương trình bậc hai với hệ số thực.
Tìm hai số phức, biết tổng của chúng bằng 3 và tích của chúng bằng 4.
Giải bài 10 trang 144 SGK Giải tích 12. Giải các phương trình sau trên tập số phức
Giải bài 9 trang 144 SGK Giải tích 12. Giải các phương trình sau trên tập số phức
Thực hiện các phép tính sau:
Chứng tỏ rằng với mọi số phức z, ta luôn có phần thực và phần ảo của z không vượt quá môdun của nó.
Giải bài 6 trang 143 SGK Giải tích 12. Tìm các số thực x, y sao cho:
Giải bài 5 trang 143 SGK Giải tích 12. Trong mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện:
Số phức thỏa mãn điều kiện nào thì có điểm biểu diễn ở phần gạch chéo trong các hình a), b), c) sau:
Nêu định nghĩa số phức liên hợp của số phức z. Số phức nào bằng số phức liên hợp của nó?
Tìm mối liên hệ giữa khái niệm môdun và khái niệm giá trị tuyệt đối của một số thực.
Thế nào là phần thực, phần ảo, modun của số phức?
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: