Bài 8 trang 143 SGK Giải tích 12

Bình chọn:
3.2 trên 5 phiếu

Giải bài 8 trang 143 SGK Giải tích 12. Thực hiện các phép tính sau:

Đề bài

a) \((3 + 2i)[(2 – i) + (3 – 2i)]\)

b) \((4 - 3i) + {{1 + i} \over {2 + i}}\)

c) \((1 + i)^2 – (1 – i)^2\)

d) \({{3 + i} \over {2 + i}} - {{4 - 3i} \over {2 - i}}\)

Phương pháp giải - Xem chi tiết

Thực hiện các phép tính theo đúng thứ tự nhân, chia trước, công trừ sau, trong ngoặc trước, ngoài ngoặc sau.

Lời giải chi tiết

a) \((3 + 2i)[(2 – i) + (3 – 2i)]= (3 + 2i)(5 – 3i) = 21 + i\)

b)

\(\eqalign{
& (4 - 3i) + {{1 + i} \over {2 + i}} = (4 - 3i) + {{(1 + i)(2 - i)} \over 5} = (4 - 3i)({3 \over 5} + {1 \over 5}i) \cr
& = (4 + {3 \over 5}) - (3 - {1 \over 5})i = {{23} \over 5} - {{14} \over 5}i \cr} \)

c) \((1 + i)^2 – (1 – i)^2 = 2i – (-2i) = 4i\)

d) 

\(\eqalign{
& {{3 + i} \over {2 + i}} - {{4 - 3i} \over {2 - i}} = {{(3 + i)(2 - i)} \over 5} - {{(4 - 3i)(2 + i)} \over 5} \cr
& = {{7 - i} \over 5} - {{11 - 2i} \over 5} = {{ - 4} \over 5} + {1 \over 5}i \cr} \)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Ôn tập Chương IV - Số phức

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu