Bài 1 trang 144 SGK Giải tích 12

Bình chọn:
3.5 trên 6 phiếu

Giải bài 1 trang 144 SGK Giải tích 12. Số nào trong các số sau là số thực?

Đề bài

Số nào trong các số sau là số thực?

A. \((\sqrt3 + 2i) – (\sqrt3 - 2i)\)

B. \((2 + i\sqrt5) + (2 - i\sqrt5)\)

C. \((1 + i\sqrt3)^2\)

D. \({{\sqrt 2  + i} \over {\sqrt 2  - i}}\)

Phương pháp giải - Xem chi tiết

\(\begin{array}{l}\left( {a + bi} \right) + \left( {c + di} \right) = \left( {a \pm c} \right) + \left( {b \pm d} \right)i\\\left( {a + bi} \right)\left( {c + di} \right) = \left( {ac - bd} \right)i + \left( {ad + bc} \right)i\end{array}\)

Lời giải chi tiết

Ta  tìm phần ảo của các số đã cho:

(A).\(\left( {\sqrt 3  + 2i} \right) - \left( {\sqrt 3  - 2i} \right) \) \(= \sqrt 3  + 2i - \sqrt 3  + 2i = 4i\)

là số thuần ảo.

(B). \(\left( {2 + i\sqrt 5 } \right) + \left( {2 - i\sqrt 5 } \right) \) \(= 2 + i\sqrt 5  + 2 - i\sqrt 5  = 4\) là số thực.

(C). \({\left( {1 + i\sqrt 3 } \right)^2} = 1 + 2\sqrt 3 i - 3 \) \(=  - 2 + 2\sqrt 3 i\) là số phức.

(D). \(\dfrac{{\sqrt 2  + i}}{{\sqrt 2  - i}} = \dfrac{{{{\left( {\sqrt 2  + i} \right)}^2}}}{{\left( {\sqrt 2  - i} \right)\left( {\sqrt 2  + i} \right)}}\) \( = \dfrac{{2 + 2\sqrt 2 i - 1}}{{2 + 1}} = \dfrac{1}{3} + \dfrac{{2\sqrt 2 i}}{3}\) 

là số phức.

Chọn đáp án (B)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Ôn tập Chương IV - Số phức

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.