Bài 2 trang 144 SGK Giải tích 12


Giải bài 2 trang 144 SGK Giải tích 12. Số nào trong các số sau là số thuần ảo?

Đề bài

Số nào trong các số sau là số thuần ảo?

A. \((\sqrt2+ 3i) + (\sqrt2 - 3i)\)

B. \((\sqrt2+ 3i) . (\sqrt2 - 3i)\)

C. \((2 + 2i)^2\)

D. \(\displaystyle{{2 + 3i} \over {2 - 3i}}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Số thuần ảo là số phức có phần thực bằng \(0\).

Lời giải chi tiết

Ta tìm phần thực của các số đã cho:

(A) \(\left( {\sqrt 2  + 3i} \right) + \left( {\sqrt 2  - 3i} \right) \) \(= \sqrt 2  + 3i + \sqrt 2  - 3i = 2\sqrt 2 \) là số thực.

(B) \(\left( {\sqrt 2  + 3i} \right)\left( {\sqrt 2  - 3i} \right)\) \( = {\left( {\sqrt 2 } \right)^2} - {\left( {3i} \right)^2} = 2 + 9 = 11\) là số thực.

(C) \({\left( {2 + 2i} \right)^2} = 4 + 8i - 4 = 8i\) là số thuần ảo.

(D) \(\displaystyle\frac{{2 + 3i}}{{2 - 3i}} = \frac{{{{\left( {2 + 3i} \right)}^2}}}{{\left( {2 - 3i} \right)\left( {2 + 3i} \right)}} \) \(\displaystyle = \frac{{4 + 12i - 9}}{{4 + 9}} = \frac{{ - 5}}{{13}} + \frac{{12}}{{13}}i\) không là số thuần ảo.

Chọn đáp án (C)

Loigiaihay.com


Bình chọn:
4 trên 5 phiếu

Các bài liên quan: - Ôn tập Chương IV - Số phức

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài