Bài 10 trang 144 SGK Giải tích 12

Bình chọn:
3 trên 9 phiếu

Giải bài 10 trang 144 SGK Giải tích 12. Giải các phương trình sau trên tập số phức

Đề bài

Giải các phương trình sau trên tập số phức

a) \(3z^2+ 7z + 8 = 0\)

b) \(z^4– 8 = 0\)

c) \(z^4– 1 = 0\)

Phương pháp giải - Xem chi tiết

a) Tính \(\Delta  = {b^2} - 4ac\). Gọi \(\delta\) là 1 căn bậc hai của \(\Delta\), khi đó phương trình có 2 nghiệm: \(\left[ \begin{array}{l}{x_1} = \frac{{ - b + \delta }}{{2a}}\\{x_1} = \frac{{ - b - \delta }}{{2a}}\end{array} \right.\)

b) Đặt \(z^2=t\), đưa phương trình về dạng phươn trình bậc hai và giải phương trình bậc hai đó, khi đó nghiệm \(z\) là căn bậc hai của các nghiệm \(t\) tìm được ở trên.

c) Đặt \(z^2=t\), đưa phương trình về dạng phươn trình bậc hai và giải phương trình bậc hai đó, khi đó nghiệm \(z\) là căn bậc hai của các nghiệm \(t\) tìm được ở trên.

Lời giải chi tiết

a) \(3z^2+ 7z + 8 = 0\) có \(Δ = 49 – 4.3.8 = -47\)

Căn bậc hai của \(\Delta\) là \( \pm i\sqrt{47}\)

Vậy phương trình có hai nghiệm là: \({z_{1,2}} = {{ - 7 \pm i\sqrt {47} } \over 6}\)

b) \(z^4– 8 = 0\)

Đặt \(t = z^2\), ta được phương trình : \({t^2} - 8 = 0 \Leftrightarrow t =  \pm \sqrt 8 \)

\(\begin{array}{l}t = \sqrt 8 \Rightarrow {z^2} = \sqrt 8 \Leftrightarrow z = \pm \sqrt {\sqrt 8 } = \pm \sqrt[4]{8}\\t = - \sqrt 8 \Rightarrow {z^2} = - \sqrt 8 \Leftrightarrow z = \pm i\sqrt {\sqrt 8 } = \pm i\sqrt[4]{8}\end{array}\)

Vậy phương trình đã cho có 4 nghiệm là: \({z_{1,2}} =  \pm \root 4 \of 8 ,{z_{3,4}} =  \pm i\root 4 \of 8 \)

c) \(z^4– 1 = 0\)

Đặt \(t = z^2\), ta được phương trình : \({t^2} - 1 = 0 \Leftrightarrow t =  \pm 1\).

\(\begin{array}{l}t = 1 \Rightarrow {z^2} = 1 \Leftrightarrow z = \pm 1\\t = - 1 \Rightarrow {z^2} = - 1 \Leftrightarrow z = \pm i\end{array}\)

Vậy phương trình đã cho có 4 nghiệm là \(±1\) và \(±i\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Ôn tập Chương IV - Số phức

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu