Câu 3.71 trang 96 sách bài tập Đại số và Giải tích 11 Nâng cao


Cho dãy số

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(({u_n})\) mà tổng n số hạng đầu tiên của nó, kí hiệu là \({S_n}\), được tính theo công thức sau :

                     \({S_n} = {{n(7 - 3n)} \over 2}.\)

LG a

 Hãy tính \({u_1},{u_2}\)  và \({u_3}.\)

Lời giải chi tiết:

 Ta có \({u_1} = {S_1} = 2,{u_2} = \left( {{u_1} + {u_2}} \right) - {u_1} \)

\(= {S_2} - {u_1} = {S_2} - {S_1} = 1 - 2 =  - 1,\)

 \({u_3} = \left( {{u_1} + {u_2} + {u_3}} \right) - ({u_1} + {u_2})\)\( = {S_3} - {S_2} =  - 4.\)

LG b

Hãy xác định số hạng tổng quát của dãy số \(({u_n})\).

Lời giải chi tiết:

Đặt \({S_0} = 0,\) ta có số hạng tổng quát của dãy số đã cho là:

\({u_n} = {S_n} - {S_{n - 1}} = {{n\left( {7 - 3n} \right)} \over 2} \)\(- {{\left( {n - 1} \right)\left[ {7 - 3\left( {n - 1} \right)} \right]} \over 2} \)

      \(= 5 - 3n.\)

LG c

Chứng minh rằng dãy số \(({u_n})\) là một cấp số cộng. Hãy xác định công sai của cấp số cộng đó.

Lời giải chi tiết:

 Ta có \({u_{n + 1}} - {u_n} = 5 - 3\left( {n + 1} \right) - 5 + 3n\)\( =  - 3\) với mọi \(n \ge 1.\) Vì thế, \(({u_n})\) là một cấp số cộng với công sai bằng \( - 3\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.