Giải bài 5 trang 90 SGK Hình học 12


Tìm số giao điểm của đường thẳng d và mặt phẳng (α).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm số giao điểm của đường thẳng \(d\) và mặt phẳng \((α)\) :

LG a

a) d: \(\left\{\begin{matrix} x=12+4t & \\ y=9+3t & \\ z=1+t & \end{matrix}\right.\) và \((α) : 3x + 5y - z - 2 = 0\) ;

Phương pháp giải:

Phương pháp tìm giao điểm của đường thẳng \(d:\,\,\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\,\,\left( {t \in R} \right)\) và mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\).

Gọi \(M = d \cap \left( P \right) \Rightarrow M \in d\) \(\Rightarrow M\left( {{x_0} + at;\,{y_0} + bt;{z_0} + ct} \right)\).

Thay tọa độ điểm M vào phương trình mặt phẳng (P), tìm ẩn t, sau đó suy ra tọa độ điểm \(M\).

Lời giải chi tiết:

Gọi \(MM \in d \) \(\Rightarrow M\left( {12 + 4t;9 + 3t;1 + t} \right)\).

Giả sử \(M \in \left( \alpha \right) \) thì ta có: 

\(3(12 + 4t) +5(9 + 3t) - (1 + t) -2 = 0\)

\( ⇔ 26t + 78 = 0 ⇔ t = -3\).

Vậy \(d  ∩ (α) = M(0 ; 0 ; -2)\).

LG b

b) d:  \(\left\{\begin{matrix} x=1+t & \\ y=2-t & \\ z=1+2t & \end{matrix}\right.\) và \((α) : x + 3y + z+1 = 0\) ;

Lời giải chi tiết:

Gọi \(M \in d\) \( \Rightarrow M\left( {1 + t;2 - t;1 + 2t} \right)\). 

Giả sử \(M \in \left( \alpha \right) \) thì ta có: 

\((1 + t) + 3.(2 - t) + (1 + 2t) + 1 = 0\)

\(⇔  0.t +9= 0\), phương trình vô nghiệm.

Chứng tỏ \(d\) và \((α)\) không cắt nhau hay \(d // (α)\).

LG c

c) d:  \(\left\{\begin{matrix} x=1+t & \\ y=1+2t & \\ z=2-3t & \end{matrix}\right.\) và \((α) : x + y + z - 4 = 0\).

Lời giải chi tiết:

Gọi \(M \in d \) \(\Rightarrow M\left( {1 + t;1 + 2t;2 - 3t} \right)\). 

Giả sử \(M \in \left( \alpha \right) \) thì ta có: 

\((1 + t) + (1+ 2t) + (2 - 3t) - 4 = 0\)

\(⇔  0t + 0 = 0\)

Phương trình này có vô số nghiệm, chứng tỏ \(d ⊂ (α)\) .

Loigiaihay.com


Bình chọn:
4 trên 24 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí