Bài 5.86 trang 213 SBT đại số và giải tích 11


Giải bài 5.86 trang 213 sách bài tập đại số và giải tích 11. Tìm vi phân của hàm số sau:...

Đề bài

Tìm vi phân của hàm số sau: \(y = {{\tan \sqrt x } \over {\sqrt x }}.\) 

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(dy = y'dx\).

Lời giải chi tiết

\(\begin{array}{l}
y'\\
= \dfrac{{\left( {\tan \sqrt x } \right)'.\sqrt x - \tan \sqrt x .\left( {\sqrt x } \right)'}}{{{{\left( {\sqrt x } \right)}^2}}}\\
= \dfrac{{\left( {\sqrt x } \right)'.\dfrac{1}{{{{\cos }^2}\sqrt x }}.\sqrt x - \tan \sqrt x .\dfrac{1}{{2\sqrt x }}}}{x}\\
= \dfrac{{\dfrac{1}{{2\sqrt x }}.\dfrac{{\sqrt x }}{{{{\cos }^2}\sqrt x }} - \dfrac{{\tan \sqrt x }}{{2\sqrt x }}}}{x}\\
= \dfrac{{\dfrac{1}{{2{{\cos }^2}\sqrt x }} - \dfrac{{\tan \sqrt x }}{{2\sqrt x }}}}{x}\\
= \dfrac{{\dfrac{{\sqrt x - \tan \sqrt x .{{\cos }^2}\sqrt x }}{{2\sqrt x {{\cos }^2}\sqrt x }}}}{x}\\
= \dfrac{{\sqrt x - \dfrac{{\sin \sqrt x }}{{\cos \sqrt x }}.{{\cos }^2}\sqrt x }}{{2x\sqrt x {{\cos }^2}\sqrt x }}\\
= \dfrac{{\sqrt x - \sin \sqrt x \cos \sqrt x }}{{2x\sqrt x {{\cos }^2}\sqrt x }}\\
= \dfrac{{2\sqrt x - 2\sin \sqrt x \cos \sqrt x }}{{4x\sqrt x {{\cos }^2}\sqrt x }}\\
= \dfrac{{2\sqrt x - \sin \left( {2\sqrt x } \right)}}{{4x\sqrt x {{\cos }^2}\sqrt x }}\\
\Rightarrow dy = y'dx\\
= \dfrac{{2\sqrt x - \sin \left( {2\sqrt x } \right)}}{{4x\sqrt x {{\cos }^2}\sqrt x }}dx
\end{array}\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4: Vi phân

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài