Bài 5.82 trang 212 SBT đại số và giải tích 11


Giải bài 5.82 trang 212 sách bài tập đại số và giải tích 11. Cho hàm số...

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(f\left( x \right) = {x^3} - 2x + 1.\)

Hãy tính \(\Delta f\left( 1 \right),df\left( 1 \right)\) và so sánh chúng, nếu

LG a

\(\Delta x = 1\)

Phương pháp giải:

Tính \(\Delta f(x)\) rồi thay các \(\Delta x\) vào kiểm tra.

Lời giải chi tiết:

Gọi \(\Delta x\)là số gia của đối số tại \(x = 1\) ta có:

\(\begin{array}{l}\Delta f\left( 1 \right) = f\left( {1 + \Delta x} \right) - f\left( 1 \right)\\ = {\left( {1 + \Delta x} \right)^3} - 2\left( {1 + \Delta x} \right) + 1 - 0\\ = 1 + 3\Delta x + 3{\left( {\Delta x} \right)^2} + {\left( {\Delta x} \right)^3}\\ - 2 - 2\Delta x + 1\\ = \Delta x + 3{\left( {\Delta x} \right)^2} + {\left( {\Delta x} \right)^3}\\f'\left( x \right) = 3{x^2} - 2\\ \Rightarrow f'\left( 1 \right) = {3.1^2} - 2 = 1\\ \Rightarrow df\left( 1 \right) = f'\left( 1 \right)\Delta x = \Delta x\end{array}\)

Vậy

\(\begin{array}{l}\Delta f\left( 1 \right) = \Delta x + 3{\left( {\Delta x} \right)^2} + {\left( {\Delta x} \right)^3}\\df\left( 1 \right) = \Delta x\end{array}\)

Với

\(\begin{array}{l}\Delta x = 1\\ \Rightarrow \Delta f\left( 1 \right) = 1 + 3 + 1 = 5\\df\left( 1 \right) = 1\\ \Rightarrow \Delta f\left( 1 \right) > df\left( 1 \right)\end{array}\)

LG b

\(\Delta x = 0,1\)

Lời giải chi tiết:

Với

\(\begin{array}{l}\Delta x = 0,1\\ \Rightarrow \Delta f\left( 1 \right) = 0,1 + 3.0,{1^2} + 0,{1^3}\\ = 0,131\\df\left( 1 \right) = 0,1\\ \Rightarrow \Delta f\left( 1 \right) > df\left( 1 \right)\end{array}\)

LG c

\(\Delta x = 0,01\)

Lời giải chi tiết:

Với

\(\begin{array}{l}\Delta x = 0,01\\ \Rightarrow \Delta f\left( 1 \right) = 0,01 + 3.0,{01^2} + 0,{01^3}\\ = 0,010301\\df\left( 1 \right) = 0,01\\ \Rightarrow \Delta f\left( 1 \right) > df\left( 1 \right)\end{array}\)

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4: Vi phân

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài