Bài 2.5 trang 64 SBT hình học 11


Đề bài

Cho hình chóp \(S. ABCD\). Lấy \(M\), \(N\) và \(P\) lần lượt là các điểm trên các đoạn \(SA\), \(AB\) và \(BC\) sao cho chúng không trùng với trung điểm của các đoạn thẳng ấy. Tìm giao điểm (nếu có) của mặt phẳng \((MNP)\) với các cạnh của hình chóp.

Phương pháp giải - Xem chi tiết

Ta lần lượt tìm giao điểm của mặt phẳng \((MNP)\) với các đường thẳng chứa các cạnh của hình chóp.

Muốn tìm giao điểm của mặt phẳng \((\alpha)\) với đường thẳng \(d\):

- Tìm đường thẳng \(d’\) sao cho \(d’\in (\alpha)\) và \(d, d’\) cùng thuộc một mặt phẳng.

- Giao điểm \(d\) và \(d’\) là giao điểm của mặt phẳng \((\alpha)\) với đường thẳng \(d\).

Lời giải chi tiết

Ta có giao điểm của \( (MNP)\) với \(SA, AB, BC\) lần lượt là \(M, N, P\).

Trong \((SAB)\) kéo dài \(MN\) và \(SB\), khi đó gọi \(I=MN\cap SB\)

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}I \in MN,MN \subset (MNP) \Rightarrow I \in (MNP)\\I \in SB\end{array} \right.\\ \Rightarrow I = (MNP) \cap SB\end{array}\)

Trong \((ABCD)\) kéo dài \(NP\) và kéo dài \(CD\), khi đó gọi \(E=NP\cap CD\)

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}E \in NP,NP \subset (MNP) \Rightarrow E \in (MNP)\\E \in CD\end{array} \right.\\ \Rightarrow E = (MNP) \cap CD\end{array}\)

Trong \((MNP)\) hay cũng là \((MIP)\) kéo dài \(IP\), khi đó gọi \(J=IP\cap SC\)

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}J \in IP,IP \subset (MNP) \Rightarrow J \in (MNP)\\J \in SC\end{array} \right.\\ \Rightarrow J = (MNP) \cap SC\end{array}\)

Trong \((SCD)\) kéo dài \(EJ\) gọi \(K=EJ\cap SD\)

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}K \in {\rm{EJ}},{\rm{EJ}} \subset (MNP) \Rightarrow K \in (MNP)\\K \in SD\end{array} \right.\\ \Rightarrow K = (MNP) \cap SD\end{array}\).

Chú ý:

Trong bài này ta chỉ xét trường hợp thông thường là khi lấy các điểm bất kì mà khi kéo dài các đường thẳng có thể cắt nhau, tức là MN cắt được SB. Còn trường hợp MN//SB thì thuộc nội dung các bài sau nên ta không xét đến.

 Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu
  • Bài 2.6 trang 64 SBT hình học 11

    Giải bài 2.6 trang 64 sách bài tập hình học 11. Cho hình chóp S.ABCD. M và N tương ứng là các điểm thuộc các cạnh SC và BC. Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN).

  • Bài 2.7 trang 64 SBT hình học 11

    Giải bài 2.7 trang 64 sách bài tập hình học 11. Cho tứ diện SABC. Trên SA, SB và SC lần lượt lấy các điểm D, E và F sao cho DE cắt AB tại I, EF cắt BC tại J, FD cắt CA tại K. Chứng minh ba điểm I, J, K thẳng hàng.

  • Bài 2.8 trang 64 SBT hình học 11

    Giải bài 2.8 trang 64 sách bài tập hình học 11. Cho hai mặt phẳng (α) và (β) cắt nhau theo giao tuyến d. Trong (α) lấy hai điểm A và B sao cho AB cắt d tại I. O là một điểm nằm ngoài (α) và (β) sao cho OA và OB lần lượt cắt (β) tại A’ và B’...

  • Bài 2.9 trang 64 SBT hình học 11

    Giải bài 2.9 trang 64 sách bài tập hình học 11. Cho tứ diện S.ABC có D, E lần lượt trung điểm AC, BC và G là trọng tâm tam giác ABC...

  • Bài 2.4 trang 63 SBT hình học 11

    Giải bài 2.4 trang 63 sách bài tập hình học 11. Cho tứ diện ABCDcó các điểm M và N lần lượt là trung điểm của ACvà BC. Lấy điểm K thuộc đoạn BD( K không là trung điểm của BD). Tìm giao điểm của đường thẳng AD và mặt phẳng (MNK).

  • Bài 2.3 trang 63 SBT hình học 11

    Giải bài 2.3 trang 63 sách bài tập hình học 11. Cho tứ diện ABCD. Trên cạnh AB lấy điểm I và lấy các điểm J, K lần lượt là điểm thuộc miền trong các tam giác BCD và ACD. Gọi L là giao điểm của JK với mặt phẳng (ABC)...

  • Bài 2.2 trang 63 SBT hình học 11

    Giải bài 2.2 trang 63 sách bài tập hình học 11. Cho hình chóp S.ABCD có đáy là tứ giác ABCD có hai cạnh đối diện không song song. Lấy điểm M thuộc miền trong của tam giác SCD...

  • Bài 2.1 trang 63 SBT hình học 11

    Giải bài 2.1 trang 63 sách bài tập hình học 11. Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD . Gọi I và J tương ứng là hai điểm trên cạnh BC và BD sao cho IJ không song song với CD

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.