Câu 87 trang 131 Sách bài tập Hình học 11 Nâng cao


Giải bài tập Câu 87 trang 131 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = a, AD = b; cạnh bên SA vuông góc với mặt phẳng đáy, AS = 2a. Gọi M là điểm bất kì trên cạnh AS, đặt \(AM = x\left( {0 \le x \le 2{\rm{a}}} \right)\).

a) Thiết diện của hình chóp S.ABCD khi cắt bởi mp(MBC) là hình gì? Tính diện tích thiết diện.

b) Tính khoảng cách từ điểm S đến mp(MBC) ứng với mỗi vị trí của M.

Lời giải chi tiết

 

a) Vì \(BC//SA{\rm{D}},M \in mp\left( {SA{\rm{D}}} \right) \cap mp\left( {MBC} \right)\)

nên \(mp\left( {MBC} \right) \cap \left( {SA{\rm{D}}} \right) = MN\)

mà \(MN//BC\left( {N \in S{\rm{D}}} \right)\).

Như vậy BMNC là hình thang.

Mặt khác \(BC \bot \left( {SAB} \right)\) nên \(BC \bot BM\).

Vậy BMNC là hình thang vuông.

Do đó thiết diện của hình chóp S.ABCD khi cắt bởi mp(MBC) nói chung là hình thang vuông.

Khi x = 0 thì thiết diện là hình chữ nhật ABCD, và khi x = 2a thì thiết diện là tam giác SBC.

Ta có

\(\eqalign{  & {S_{BMNC}} = {1 \over 2}\left( {BC + MN} \right).BM  \cr  & B{M^2} = {a^2} + {x^2} \cr} \)

hay \(BM = \sqrt {{a^2} + {x^2}} \)

\({{MN} \over {A{\rm{D}}}} = {{SM} \over {SA}} = {{2{\rm{a}} - x} \over {2{\rm{a}}}}\), từ đó \(MN = b.{{2{\rm{a}} - x} \over {2{\rm{a}}}}\).

Từ đó

\(\eqalign{  & {S_{BMNC}} = {1 \over 2}\left( {b + b.{{2{\rm{a}} - x} \over {2{\rm{a}}}}} \right).\sqrt {{a^2} + {x^2}}   \cr  &  = {b \over {4{\rm{a}}}}\left( {4{\rm{a}} - x} \right)\sqrt {{a^2} + {x^2}}  \cr} \)

b) Do \(\left( {BMNC} \right) \bot \left( {SAB} \right)\) nên khi kẻ SH vuông góc với đường thẳng \(BM\left( {H \in BM} \right)\) thì \(SH \bot \left( {BMNC} \right)\).

Khoảng cách từ S đến mp(BCM) là SH. Dễ thấy

\(SH.BM = 2{{\rm{S}}_{SBM}} = 2.{1 \over 2}a\left( {2{\rm{a}} - x} \right)\)

Vậy \(SH = {{a\left( {2{\rm{a}} - x} \right)} \over {\sqrt {{a^2} + {x^2}} }}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài