Câu 74 trang 128 Sách bài tập Hình học 11 Nâng cao


Giải bài tập Câu 74 trang 128 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho tứ diện ABCD. Gọi \({A_1},{B_1},{C_1},{D_1}\) là các điểm lần lượt thuộc các đường thẳng AB, BC, CD, DA sao cho \(\overrightarrow {{A_1}A}  = k\overrightarrow {{A_1}B} ,\overrightarrow {{B_1}B}  = k\overrightarrow {{B_1}C} \) , \(\overrightarrow {{C_1}C}  = k\overrightarrow {{C_1}D} ,\overrightarrow {{D_1}D}  = k\overrightarrow {{D_1}A} \). Với giá trị bào của k thì bốn điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng?

Lời giải chi tiết

Cách 1. 

Đặt \(\overrightarrow {DA}  = \overrightarrow a ,\overrightarrow {DB}  = \overrightarrow b ,\overrightarrow {DC}  = \overrightarrow c \) thì \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng.

Các điểm \({A_1},{B_1},{C_1},{D_1}\)  cùng thuộc một mặt phẳng khi và chỉ khi có các số m, n để

\(\overrightarrow {{D_1}{B_1}}  = m\overrightarrow {{D_1}{A_1}}  + n\overrightarrow {{D_1}{C_1}} \,\,\,\,\,\,\,\,\,\left( 1 \right)\)

Từ hệ thức \(\overrightarrow {{B_1}B}  = k\overrightarrow {{B_1}C} \), ta có

\(\overrightarrow {{D_1}{B_1}}  = {{\overrightarrow {{D_1}B}  - k\overrightarrow {{D_1}C} } \over {1 - k}}\)

hay

\(\eqalign{  & \overrightarrow {{D_1}{B_1}}  = {{\overrightarrow {{D_1}D}  + \overrightarrow {DB}  - k\left( {\overrightarrow {{D_1}D}  + \overrightarrow {DC} } \right)} \over {1 - k}}  \cr  &  = \overrightarrow {{D_1}D}  + {1 \over {1 - k}}\overrightarrow b  - {k \over {1 - k}}\overrightarrow c  \cr} \)

Mặt khác

 \(\eqalign{  & \overrightarrow {{D_1}D}  = k\overrightarrow {{D_1}A}  = k\left( {\overrightarrow {{D_1}D}  + \overrightarrow {DA} } \right)  \cr  &  \Rightarrow \overrightarrow {{D_1}D}  = {k \over {1 - k}}\overrightarrow a  \cr} \)

Vậy \(\overrightarrow {{D_1}{B_1}}  = {k \over {1 - k}}\overrightarrow a  + {1 \over {1 - k}}\overrightarrow b  - {k \over {1 - k}}\overrightarrow c \).

Tương tự như trên, ta có

\(\eqalign{  & \overrightarrow {{D_1}{A_1}}  = {{\overrightarrow {{D_1}A}  - k\overrightarrow {{D_1}B} } \over {1 - k}}  \cr  &  = {{\overrightarrow {{D_1}D}  + \overrightarrow {DA}  - k\left( {\overrightarrow {{D_1}D}  + \overrightarrow {DB} } \right)} \over {1 - k}}  \cr  &  = \overrightarrow {{D_1}D}  + {1 \over {1 - k}}\overrightarrow a  - {k \over {1 - k}}\overrightarrow b  \cr} \)

hay

\(\eqalign{  & \overrightarrow {{D_1}{A_1}}  = {{k + 1} \over {1 - k}}\overrightarrow a  - {k \over {1 - k}}\overrightarrow b \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)  \cr  & \overrightarrow {{D_1}{C_1}}  = {{\overrightarrow {{D_1}C}  - k\overrightarrow {{D_1}D} } \over {1 - k}}  \cr  &  = {{\overrightarrow {{D_1}D}  + \overrightarrow {DC}  - k\overrightarrow {{D_1}D} } \over {1 - k}}  \cr  &  = \overrightarrow {{D_1}D}  + {1 \over {1 - k}}\overrightarrow c  \cr} \)

do đó \(\overrightarrow {{D_1}{C_1}}  = {k \over {1 - k}}\overrightarrow a  + {1 \over {1 - k}}\overrightarrow c .\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\)

Từ (1), (2), (3), (4) ta có các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc mặt phẳng khi và chỉ khi

\(k\overrightarrow a  + \overrightarrow b  - k\overrightarrow c \)

\(= \left( {mk + nk + m} \right)\overrightarrow a  - mk\overrightarrow b  + n\overrightarrow c \)

Do \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng nên đẳng thức trên xảy ra khi và chỉ khi có các số m, n để

\(\left\{ \matrix{  k = mk + nk + m \hfill \cr  1 =  - mk \hfill \cr   - k = n \hfill \cr}  \right.\)

Điều đó tương đương với \(k =  - 1 - {k^2} - {1 \over k}\) hay \({k^3} + {k^2} + k + 1 = 0\) hay k = -1.

Vậy với k = -1 thì các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng.

Cách 2.

Đặt \(\overrightarrow {DA}  = \overrightarrow a ,\overrightarrow {DB}  = \overrightarrow b ,\overrightarrow {DC}  = \overrightarrow c \). Tìm k để các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng tương đương với việc tìm k để có biểu diễn

\(\overrightarrow {D{A_1}}  = x\overrightarrow {D{B_1}}  + y\overrightarrow {D{C_1}}  + z\overrightarrow {{\rm{D}}{{\rm{D}}_1}} \) 

với x + y + z = 1               (a)

Từ hệ thức \(\overrightarrow {{A_1}A}  = k\overrightarrow {{A_1}B} \) ta có

\(\eqalign{  & \overrightarrow {D{A_1}}  = {{\overrightarrow {DA}  - k\overrightarrow {DB} } \over {1 - k}}  \cr  &  = {1 \over {1 - k}}\overrightarrow a  - {k \over {1 - k}}\overrightarrow b \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr} \)

Tương tự như trên, ta cũng có

\(\overrightarrow {D{B_1}}  = {1 \over {1 - k}}\overrightarrow b  - {k \over {1 - k}}\overrightarrow c \,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

Mặt khác từ \(\overrightarrow {{C_1}C}  = k\overrightarrow {{C_1}D} \) ta có

\(\eqalign{  & \overrightarrow {{C_1}D}  + \overrightarrow {DC}  = k\overrightarrow {{C_1}D}   \cr  &  \Leftrightarrow \overrightarrow {D{C_1}}  = {1 \over {1 - k}}\overrightarrow c \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \cr} \)

Tương tự từ \(\overrightarrow {{D_1}D}  = k\overrightarrow {{D_1}A} \), ta cũng có

\(\overrightarrow {{D_1}D}  = {k \over {1 - k}}\overrightarrow a \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\)

Từ (1), (2), (3), (4), ta suy ra

\(\overrightarrow {D{A_1}}  =  - {1 \over k}\overrightarrow {{\rm{D}}{{\rm{D}}_1}}  - k\overrightarrow {D{B_1}}  - {k^2}\overrightarrow {D{C_1}} \,\,\,\,\,\,\,\,\,\,\,\left( b \right)\)

Từ (a) và (b) ta có các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng khi và chỉ khi:

\(\eqalign{  &  - {1 \over k} - k - {k^2} = 1  \cr  &  \Leftrightarrow {k^3} + {k^2} + k + 1 = 0  \cr  &  \Leftrightarrow k =  - 1 \cr} \)

Vậy với k = -1 thì các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.