Câu 77 trang 129 Sách bài tập Hình học 11 Nâng cao


Đề bài

Cho hình chóp S.ABC có đáy là tam giác đều, SA = SB = SC = a và cùng tạo với mặt phẳng (ABC) góc 60°. Một mặt phẳng song song với hai cạnh chéo nhau của hình chóp và cắt hình chóp đó theo thiết diện là hình vuông. Tính diện tích thiết diện.

Lời giải chi tiết

 

Giả sử H là tâm của tam giác đều.

Từ SA = SB = SC nên \(SH \bot \left( {ABC} \right)\) và \(\widehat {SAH} = {60^0}\).

Giả sử mặt phẳng song song với SA, CD và thiết diện thu được là hình vuông MNPQ.

Khi đó, nếu kí hiệu cạnh hình vuông là x thì:

\(\eqalign{  & {x \over {SA}} = {{CQ} \over {C{\rm{S}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)  \cr  & {x \over {BC}} = {{SQ} \over {SC}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \cr} \)

Từ (1), (2) suy ra:

\(\eqalign{  & x\left( {{1 \over {SA}} + {1 \over {BC}}} \right) = {{CQ + Q{\rm{S}}} \over {C{\rm{S}}}} = 1  \cr  &  \Rightarrow x= {{SA.BC} \over {SA + BC}} = {{a.BC} \over {a + BC}} \cr} \)

Mặt khác \(HA = SA\cos {60^0} = {a \over 2}\).

mà \(HA = {{BC\sqrt 3 } \over 3}\).

Suy ra \(BC = {{a\sqrt 3 } \over 2}\).

Từ đó \(x = {{a.{{a\sqrt 3 } \over 2}} \over {a + {{a\sqrt 3 } \over 2}}} = {{a\sqrt 3 } \over {2 + \sqrt 3 }} = a\sqrt 3 \left( {2 - \sqrt 3 } \right)\).

Vậy \({S_{MNPQ}} = {\left[ {a\sqrt 3 \left( {2 - \sqrt 3 } \right)} \right]^2} = 3{{\rm{a}}^2}{\left( {2 - \sqrt 3 } \right)^2}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.