Câu 78 trang 129 Sách bài tập Hình học 11 Nâng cao


Đề bài

Cho tam giác đề ABC có chiều cao AH = 5a. Điểm O thuộc đoạn thẳng AH sao cho AO = a. Điểm S trên đường thẳng vuông góc với mặt phẳng (ABC) tại O và SO = 2a.

a) Chứng mịn AS và CS vuông góc với nhau. Tính góc giữa hai đường thẳng AB và SC.

b) Gọi I là trung điểm của OH; (α) là mặt phẳng đi qua điểm I và vuông góc với AH. Thiết diện của hình chóp S.ABC khi cắt bởi (α) là hình gì? Tính diện tích thiết diện.

Lời giải chi tiết

 

a) Dễ thấy

\(\eqalign{  & BC = {{10{\rm{a}}} \over {\sqrt 3 }}  \cr  & S{A^2} = S{O^2} + A{O^2}  \cr  &  = 4{{\rm{a}}^2} + {a^2} = 5{{\rm{a}}^2}  \cr  & S{C^2} = S{O^2} + A{O^2}  \cr  &  = 4{{\rm{a}}^2} + 16{{\rm{a}}^2} + {{25{{\rm{a}}^2}} \over 3}  \cr  &  = {{85{a^2}} \over 3}  \cr  & A{C^2} = {{100{{\rm{a}}^2}} \over 3} \cr} \)

Ta có \(S{A^2} + S{C^2} = A{C^2}\)

Vậy \(SA \bot SC\).

+ Kẻ AD song song và bằng BC (hai tia AD, BC cùng chiều) thì góc giữa AB và SC chính là góc giữa CD và SC, đó là \(\widehat {SC{\rm{D}}}\) hoặc \({180^0} - \widehat {SC{\rm{D}}}\).

Dễ thấy \(SA \bot BC\), do AD // BC nên \(SA \bot A{\rm{D}}\), tức là tam giác SAD vuông.

Do đó \(S{{\rm{D}}^2} = S{A^2} + A{{\rm{D}}^2} = 5{{\rm{a}}^2} + {{100{{\rm{a}}^2}} \over 3} = {{115{{\rm{a}}^2}} \over 3}\),

mặt khác \(S{{\rm{D}}^2} = S{C^2} + D{C^2} - 2{\rm{S}}C.DC\cos \widehat {SCD}\)

nên ta có

\(\eqalign{& {{115{{\rm{a}}^2}} \over 3} \cr & = {{85{{\rm{a}}^2}} \over 3} + {{100{{\rm{a}}^2}} \over 3} - 2.{{a\sqrt {85} } \over {\sqrt 3 }}.{{10{\rm{a}}} \over {\sqrt 3 }}\cos \widehat {SCD} \cr & \Rightarrow \cos \widehat {SCD} = {7 \over {2\sqrt {85} }} \cr} \)

Vậy góc giữa AB và SC là α mà

\(\cos \alpha  = {7 \over {2\sqrt {85} }}\).

Do \(\left( \alpha  \right) \bot AH,SO \bot AH\) và \(BC \bot AH\) nên SO và BC cùng song song với (α). Khi đó \(\left( \alpha  \right) \cap \left( {ABC} \right) = MN\), MN qua I và MN // BC

\(\eqalign{  & \left( \alpha  \right) \cap \left( {SOH} \right) = IJ,IJ//SO  \cr  & \left( \alpha  \right) \cap \left( {SBC} \right) = PQ \cr} \)

PQ qua J và PQ // BC.

Dễ thấy MNPQ là hình thang cân với chiều cao JI.

Ta có :

\(\eqalign{  & {\rm{IJ}} = {1 \over 2}SO = a  \cr  & PQ = {1 \over 2}BC = {{5{\rm{a}}} \over {\sqrt 3 }}  \cr  & {{MN} \over {BC}} = {{3{\rm{a}}} \over {5{\rm{a}}}} \Rightarrow MN = {{10{\rm{a}}.3} \over {\sqrt 3 .5}} = 2{\rm{a}}\sqrt 3 . \cr} \)

Suy ra

\(\eqalign{  & {S_{MNPQ}} = {1 \over 2}\left( {MN + PQ} \right).{\rm{IJ}}  \cr  &  = {1 \over 2}\left( {2{\rm{a}}\sqrt 3  + {{5{\rm{a}}} \over {\sqrt 3 }}} \right).a = {{11{{\rm{a}}^2}} \over {2\sqrt 3 }} \cr} \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài