Câu 57 trang 61 Sách Bài tập Hình học 11 Nâng cao


Cho hình chóp cụt tứ giác ABCD.A’B’C’D’, có các cạnh bên là AA’, BB’, CC’, DD’ và có đáy lớn ABCD là hình bình hành.

Đề bài

Cho hình chóp cụt tứ giác ABCD.A’B’C’D’, có các cạnh bên là AA’, BB’, CC’, DD’ và có đáy lớn ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là giao điểm của các cặp đường thẳng AD’ và BC’, CB’ và DA’, BA’ và CD’, AB’ và DC’. Chứng minh bốn điểm M, N, P, Q đồng phẳng.

Lời giải chi tiết

Gọi S là điểm đồng quy của các cạnh AA’, BB’, CC’, DD’. Vì BC song song với AD nên giao tuyến \(\Delta\) của hai mặt phẳng (BB’C’C), (AA’D’D) đi qua S và song song với BC. Rõ ràng M, N là hai điểm chung của hai mặt phẳng nói trên. Do đó M, N đều thuộc \(\Delta\). Lí luận tương tự, hai điểm P, Q thuộc giao tuyến \(\Delta'\) của hai mặt phẳng (ABB’A’) và (CDD’C’) (giao tuyến này đi qua S và song song với AB). 

Vậy bốn điểm M, N, P,Q cùng nằm trên mp \(\left( {\Delta ,\Delta '} \right)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4: Hai mặt phẳng song song

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài