Câu 57 trang 61 Sách Bài tập Hình học 11 Nâng cao


Đề bài

Cho hình chóp cụt tứ giác ABCD.A’B’C’D’, có các cạnh bên là AA’, BB’, CC’, DD’ và có đáy lớn ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là giao điểm của các cặp đường thẳng AD’ và BC’, CB’ và DA’, BA’ và CD’, AB’ và DC’. Chứng minh bốn điểm M, N, P, Q đồng phẳng.

Lời giải chi tiết

Gọi S là điểm đồng quy của các cạnh AA’, BB’, CC’, DD’. Vì BC song song với AD nên giao tuyến \(\Delta\) của hai mặt phẳng (BB’C’C), (AA’D’D) đi qua S và song song với BC. Rõ ràng M, N là hai điểm chung của hai mặt phẳng nói trên. Do đó M, N đều thuộc \(\Delta\). Lí luận tương tự, hai điểm P, Q thuộc giao tuyến \(\Delta'\) của hai mặt phẳng (ABB’A’) và (CDD’C’) (giao tuyến này đi qua S và song song với AB). 

Vậy bốn điểm M, N, P,Q cùng nằm trên mp \(\left( {\Delta ,\Delta '} \right)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4: Hai mặt phẳng song song

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.