Câu 57 trang 61 Sách Bài tập Hình học 11 Nâng cao>
Cho hình chóp cụt tứ giác ABCD.A’B’C’D’, có các cạnh bên là AA’, BB’, CC’, DD’ và có đáy lớn ABCD là hình bình hành.
Đề bài
Cho hình chóp cụt tứ giác ABCD.A’B’C’D’, có các cạnh bên là AA’, BB’, CC’, DD’ và có đáy lớn ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là giao điểm của các cặp đường thẳng AD’ và BC’, CB’ và DA’, BA’ và CD’, AB’ và DC’. Chứng minh bốn điểm M, N, P, Q đồng phẳng.
Lời giải chi tiết
Gọi S là điểm đồng quy của các cạnh AA’, BB’, CC’, DD’. Vì BC song song với AD nên giao tuyến \(\Delta\) của hai mặt phẳng (BB’C’C), (AA’D’D) đi qua S và song song với BC. Rõ ràng M, N là hai điểm chung của hai mặt phẳng nói trên. Do đó M, N đều thuộc \(\Delta\). Lí luận tương tự, hai điểm P, Q thuộc giao tuyến \(\Delta'\) của hai mặt phẳng (ABB’A’) và (CDD’C’) (giao tuyến này đi qua S và song song với AB).
Vậy bốn điểm M, N, P,Q cùng nằm trên mp \(\left( {\Delta ,\Delta '} \right)\).
Loigiaihay.com
- Câu 56 trang 61 Sách Bài tập Hình học 11 Nâng cao
- Câu 55 trang 61 Sách Bài tập Hình học 11 Nâng cao
- Câu 54 trang 60 - 61 Sách Bài tập Hình học 11 Nâng cao
- Câu 53 trang 60 Sách Bài tập Hình học 11 Nâng cao
- Câu 52 trang 60 Sách Bài tập Hình học 11 Nâng cao
>> Xem thêm
Các bài khác cùng chuyên mục