Câu 45 trang 59 Sách Bài tập Hình học 11 Nâng cao


Đề bài

Cho hình chóp S.ABCD. Các điểm I, J, K lần lượt là trọng tâm các tam giác SAB, SBC, SCA.

a) Chứng minh rằng (IJK) // (ABC).

b) Tìm tập hợp các điểm M nằm trong hình chóp S.ABC sao cho KM song song với mp(ABC).

Lời giải chi tiết

(h.98)

a) Gọi I’, J’, K’ lần lượt là giao điểm của các cặp đường thẳng SI và AB, SJ và BC, SK và CA. Khi đó I’, J’, K’ lần lượt là trung điểm của các cạnh AB, BC và CA.

Ta có: \({{SI} \over {SI'}} = {{SK} \over {SK'}} = {{SJ} \over {SJ'}} = {2 \over 3}\)

\( \Rightarrow \) IK // I’K’, KJ // K’J’

\( \Rightarrow \) mp(IJK) // mp(I’J’K’).

Mặt khác mp(I’J’K’) \( \equiv \) mp(ABC)

Vậy (IJK) // (ABC)

b) Ta có KM // (ABC) khi và chỉ khi KM thuộc mp(P) qua K và song song với mp(ABC). Vậy KM // (ABC) khi và chỉ khi M \( \in \) (P).

Gọi A’, B’, C’ lần lượt là các giao điểm của (P) với các cạnh SA, SB, SC. Khi đó A’B’ // AB,B’C’ // BC, C’A’ // CA.

Theo giả thiết M chỉ nằm trong hình chóp S.ABCD, nên tập hợp các điểm M sao cho KM // (ABC) là tam giác A’B’C’.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.