Câu 3.51 trang 149 sách bài tập Giải tích 12 Nâng cao>
Tính diện tích của hình phẳng giới hạn bởi:
Tính diện tích của hình phẳng giới hạn bởi:
LG a
Đồ thị hai hàm số \(y = 7 - 2{x^2}\) và \(y = {x^2} + 4\)
Lời giải chi tiết:
\(S = \int\limits_{ - 1}^1 {\left( {7 - 2{x^2} - {x^2} - 4} \right)} dx = \int\limits_{ - 1}^1 {\left( {3 - 3{x^2}} \right)} dx = 4\) (h.3.12)
LG b
Hai đường cong \(x - {y^2} = 0\) và \(x + 2{y^2} = 3\)
Lời giải chi tiết:
\(S = 2\int\limits_0^1 {\sqrt x dx} + 2\int\limits_1^3 {\sqrt {{{3 - x} \over 2}} } dx = 2.{2 \over 3} + 2.{4 \over 3} = 4\) (h.3.13)
LG c
Hai đường cong \(x = {y^3} - {y^2}\) và \(x = 2y\)
Lời giải chi tiết:
\(S = \int\limits_0^2 {\left( {2y - {y^3} + {y^2}} \right)dy + } \int\limits_{ - 1}^0 \left( {{y^3} - {y^2} - 2y} \right)dy \)
\(= {8 \over 3} + {5 \over {12}} = {{37} \over {12}} \) (h.3.14)
Loigiaihay.com
- Câu 3.52 trang 149 sách bài tập Giải tích 12 Nâng cao
- Câu 3.53 trang 149 sách bài tập Giải tích 12 Nâng cao
- Câu 3.54 trang 150 sách bài tập Giải tích 12 Nâng cao
- Câu 3.50 trang 149 sách bài tập Giải tích 12 Nâng cao
- Câu 3.49 trang 149 sách bài tập Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao