Câu 3.47 trang 148 sách bài tập Giải tích 12 Nâng cao


Tính diện tích hình phẳng giới hạn bởi:

Lựa chọn câu để xem lời giải nhanh hơn

Tính diện tích hình phẳng giới hạn bởi:

LG a

Đồ thị hàm số \(y = x + {1 \over x}\), trục hoành,  đường thẳng \(x =  - 2\) và đường thẳng \(x =  - 1\)

Giải chi tiết:

\(S = \int\limits_{ - 2}^{ - 1} {\left| {1 + {1 \over x}} \right|} dx\)  (h.3.7)

$$ =  - \int\limits_{ - 2}^{ - 1} {\left( {1 + {1 \over x}} \right)} \,dx = \left( { - x - \ln |x|} \right)|_{ - 2}^{ - 1} = 1 + \ln 2$$

                                

LG b

Đồ thị hàm số \(y = 1 - {1 \over {{x^2}}}\), trục hoành, đường thẳng \(x = 1\) và đường thẳng \(x = 2\)

Giải chi tiết:

\(S = \int\limits_1^2 {\left( {1 - {1 \over {{x^2}}}} \right)dx} = \left( {x + {1 \over x}} \right)|_1^2 = 0,5\)

LG c

Đồ thị hàm số \(y = 1 - {1 \over {{x^2}}}\), đường thẳng  \(y =  - {1 \over 2}\) và đường thẳng \(y = {1 \over 2}\)

Giải chi tiết:

Diện tích hình thang cong ABCD là \(\int\limits_{ - {1 \over 2}}^{{1 \over 2}} {{{dy} \over {\sqrt {1 - y} }}}  = \sqrt 6  - \sqrt 2 \)   (h.3.8)

Do đó diện tích hình phẳng cần tìm là: \(2\left( {\sqrt 6  - \sqrt 2 } \right)\)

                              

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài