Bài 2.27 trang 64 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 2.27 trang 64 sách bài tập Đại số và Giải tích 11 Nâng cao. Cho hai đường thẳng a, b song song. Xét tập H có 30 điểm khác nhau, trong đó trên đường thẳng a có 10 điểm và trên đường thẳng b có 20 điểm của H. Có bao nhiêu tam giác mà các đỉnh của nó thuộc tập H?

Đề bài

Cho hai đường thẳng a, b song song. Xét tập H có 30 điểm khác nhau, trong đó trên đường thẳng a có 10 điểm và trên đường thẳng b có 20 điểm của H. Có bao nhiêu tam giác mà các đỉnh của nó thuộc tập H?

Lời giải chi tiết

Có hai loại tam giác.

Loại 1 : Gồm một điểm trên a và hai điểm trên b. Có \(10.C_{20}^2 = 1900\) tam giác loại 1.

Loại 2 : Gồm một điểm trên b và hai điểm trên a. Có \(20.C_{10}^2 = 900\) tam giác loại 2.

Vậy tất cả có 1900 + 900 = 2800 tam giác.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí