Bài 2.11 trang 63 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 2.11 trang 63 sách bài tập Đại số và Giải tích 11 Nâng cao. Một nhóm học sinh gồm n nam và n nữ đứng thành hàng ngang. Có bao nhiêu tình huống mà nam, nữ đứng xen kẽ nhau ?

Đề bài

Một nhóm học sinh gồm \(n\) nam và \(n\) nữ đứng thành hàng ngang. Có bao nhiêu tình huống mà nam, nữ đứng xen kẽ nhau ?

Lời giải chi tiết

Gọi T và G tương ứng là nam và nữ trong hàng.

Theo bài ra với dãy mà nam đứng đầu TGTG…TG có:

+) Vị trí đầu có n cách chọn HS nam.

+) Vị trí thứ hai có n cách chọn HS nữ.

+) Ví trí thứ ba có n-1 cách chọn HS nam.

...

Do đó có:

\(n.n.\left( {n - 1} \right)\left( {n - 1} \right)...2.2.1.1 = {\left( {n!} \right)^2}\) cách.

Tương tự với dãy nữ đứng đầu có \({\left( {n!} \right)^2}\) cách.

Vậy có \(2{\left( {n!} \right)^2}\) cách sắp xếp nam nữ đứng xen kẽ nhau.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí