Bài 1.9 trang 8 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.9 trang 8 sách bài tập Đại số và Giải tích 11 Nâng cao. Từ tính chất hàm số ...

Lựa chọn câu để xem lời giải nhanh hơn

Từ tính chất hàm số \(y = \tan x\) là hàm số tuần hoàn với chu kì \(\pi \), hãy chứng minh rằng:

LG a

Hàm số \(y = A\tan \omega x + B\) (\(A,B,\omega \) là những hằng số, \(A\omega  \ne 0\)) là hàm số tuần hoàn với chu kì \({\pi  \over {\left| \omega  \right|}}\)  

Lời giải chi tiết:

Hàm số \(y = A\tan \omega x + B\) có tập xác định \(D = R\backslash \left\{ {{\pi  \over {2\omega }} + k{\pi  \over \omega }|k \in Z} \right\}\) .

Cần tìm T để \(\forall x \in D,x + T\) và \(x - T\) đều thuộc D và \(A\tan \omega \left( {x + T} \right) + B = A\tan \omega x + B\), tức là \(\tan (\omega x + \omega T) = \tan \omega x\).

Rõ ràng \(x \in D \Leftrightarrow \omega x = u \in {D_1}\) nên \(\tan (u + \omega T) = \tan u\) với mọi \(u \in D_1\) khi và chỉ khi \(\omega T = k\pi ,k \in Z\) .

Từ đó \(T = k{\pi  \over \omega }\) và số T dương nhỏ nhất cần tìm \({\pi  \over {\left| \omega  \right|}}\).

LG b

Hàm số \(y = \cot x\) là hàm số tuần hoàn với chu kì \(\pi \)

Lời giải chi tiết:

Với mọi \(x \in {D_2},\cot x =  - \tan \left( {x + {\pi  \over 2}} \right)\), nên \(\cot (x + T) = \cot x,\forall x \in {D_2}\) tương đương với \(\tan (u + T) = \tan u,\forall u = x + {\pi  \over 2} \in {D_1}\)

Từ đó \(T = k\pi ,k \in Z\).

Vậy số T dương nhỏ nhất cần tìm là \(\pi \).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Các hàm số lượng giác

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài