Bài 1.17 trang 9 SBT Đại số và Giải tích 11 Nâng cao>
Giải bài 1.17 trang 9 sách bài tập Đại số và Giải tích 11 Nâng cao. Phép tịnh tiến theo vectơ ...
Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến đồ thị của mỗi hàm số sau thành đồ thị hàm số nào ?
LG a
\(y = \sin x\)
Phương pháp giải:
Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\)
\(\left\{ \matrix{
x' = x + {\pi \over 4} \hfill \cr
y' = y + 1 \hfill \cr} \right.\)
Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) .
Lời giải chi tiết:
\(y = \sin \left( {x - {\pi \over 4}} \right) + 1\)
LG b
\(y = \cos 2x - 1\)
Phương pháp giải:
Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\)
\(\left\{ \matrix{
x' = x + {\pi \over 4} \hfill \cr
y' = y + 1 \hfill \cr} \right.\)
Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) .
Lời giải chi tiết:
\(y = \sin 2x,\) (do \(y = \cos 2\left( {x - {\pi \over 4}} \right) = \sin 2x\))
LG c
\(y = 2\sin \left( {x + {\pi \over 4}} \right)\)
Phương pháp giải:
Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\)
\(\left\{ \matrix{
x' = x + {\pi \over 4} \hfill \cr
y' = y + 1 \hfill \cr} \right.\)
Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) .
Lời giải chi tiết:
\(y = 2\sin x + 1\)
LG d
\(y = \cos \left| x \right| - 1\)
Phương pháp giải:
Phép tịnh tiến theo vectơ \(\overrightarrow u \left( {{\pi \over 4};1} \right)\) biến điểm \(\left( {x;y} \right)\) thành điểm \(\left( {x';y'} \right)\)
\(\left\{ \matrix{
x' = x + {\pi \over 4} \hfill \cr
y' = y + 1 \hfill \cr} \right.\)
Từ đó nó biến mỗi đồ thị của hàm số \(y = f\left( x \right)\) thành đồ thị của hàm số \(y = f\left( {x' - {\pi \over 4}} \right) + 1\) .
Lời giải chi tiết:
\(y = \cos \left| {x - {\pi \over 4}} \right|\)
Loigiaihay.com
- Bài 1.18 trang 9 SBT Đại số và Giải tích 11 Nâng cao
- Bài 1.19 trang 10 SBT Đại số và Giải tích 11 Nâng cao
- Bài 1.16 trang 9 SBT Đại số và Giải tích 11 Nâng cao
- Bài 1.15 trang 9 SBT Đại số và Giải tích 11 Nâng cao
- Bài 1.14 trang 9 SBT Đại số và Giải tích 11 Nâng cao
>> Xem thêm
Các bài khác cùng chuyên mục