Bài 1.10 trang 8 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.10 trang 8 sách bài tập Đại số và Giải tích 11 Nâng cao. Chứng minh rằng hàm số sau đây là hàm số tuần hoàn, tìm chu kì và xét tính chẵn lẻ mỗi hàm số:...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng hàm số sau đây là hàm số tuần hoàn, tìm chu kì và xét tính chẵn lẻ mỗi hàm số:

LG a

\(y = {1 \over {\sin x}}\) 

Lời giải chi tiết:

\(y = {1 \over {\sin x}}\) là hàm số xác định trên \({D_2}\).

Cần tìm số T thỏa mãn:

\(\forall x \in {D_2},x + T \in {D_2},x - T \in {D_2},\) \({1 \over {\sin (x + T)}} = {1 \over {\sin x}}\)

Xét \(x = {\pi  \over 2} \in {D_2}\), ta được \(\sin \left( {{\pi  \over 2} + T} \right) = 1,\) từ đó \({\pi  \over 2} + T = {\pi  \over 2} + k2\pi ,\) tức \(T = k2\pi ,\) k là số nguyên.

Rõ ràng với mọi số nguyên k, số \(T = k2\pi \) thỏa mãn: \(\forall x \in {D_2},x + T \in {D_2},x - T \in {D_2}\) và \({1 \over {\sin \left( {x + T} \right)}} = {1 \over {\sin x}}\).

Vậy hàm số  \(y = {1 \over {\sin x}}\) là một hàm tuần hoàn với chu kì \(2\pi \).

Đó là một hàm số lẻ.

LG b

 \(y = {1 \over {\cos x}}\)

Lời giải chi tiết:

\(y = {1 \over {\cos x}}\) là hàm số xác định trên \({D_1}\).

Cần tìm số T thỏa mãn:

\(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\), \) \(\({1 \over {\cos \left( {x + T} \right)}} = {1 \over {\cos x}}\).

Xét \(x = 0 \in {D_1},\) ta được \(\cos T = 1\), từ đó \(T = k2\pi ,\) k là số nguyên.

Rõ ràng với mọi số nguyên k, số  \(T = k2\pi \) thỏa mãn các điều kiện đề ra.

Vậy hàm số \(y = {1 \over {\cos x}}\) là một hàm số tuần hoàn với chu kì \(2\pi \).

Đó là một hàm số chẵn.

LG c

\(y = {\tan ^2}x\)

Lời giải chi tiết:

\(y = {\tan ^2}x\), cần tìm số T thỏa mãn:

\(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\), \({\tan ^2}\left( {x + T} \right) = {\tan ^2}x.\)

Xét \(x = 0 \in {D_1},\) ta được \({\tan ^2}T = 0,\) từ đó \(\tan T = 0,\) suy ra \( T = k\pi \), k là số nguyên.

Rõ ràng với mọi số nguyên k, số \(T = k\pi \) thỏa mãn:

\(\forall x \in {D_1},x + T \in {D_1},x - T \in {D_1}\) và \({\tan ^2}\left( {x + T} \right) = {\tan ^2}\left( {x + k\pi } \right) = {\tan ^2}x.\)

Vậy hàm số \({\tan ^2}x\) là một hàm số tuần hoàn với chu kì \(\pi \).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Các hàm số lượng giác

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài