Bài 38 trang 11 SBT Hình học 10 Nâng cao


Giải bài 38 trang 11 sách bài tập Hình học 10 Nâng cao. Cho tam giác ABC có trực tâm H và tâm đường tròn ngoại tiếp O. Chứng minh rằng...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho tam giác \(ABC\) có trực tâm \(H\) và tâm đường tròn ngoại tiếp \(O\). Chứng minh rằng

a) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH} \);

b) \(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = 2\overrightarrow {HO} \).

Lời giải chi tiết

a) Gọi \(B’\) là điểm đối xứng với \(B\) qua \(O\), ta có \(B'C \bot BC\). Vì \(H\) là trực tâm tam giác \(ABC\) nên \(AH \bot BC\). Vậy \(AH//B’C.\)

Chứng minh tương tự ta có \(CH//B’A.\)

Vậy \(AB’CH\) là hình bình hành. Suy ra \(\overrightarrow {AH}  = \overrightarrow {B'C} \). Gọi \(D\) là trung điểm của \(BC\) thì \(OD\) là đường trung bình của tam giác \(BB’C\) nên \(\overrightarrow {B'C}  = 2\overrightarrow {OD} \). Vậy \(\overrightarrow {AH}  = 2\overrightarrow {OD} \).

Từ đó, ta có

\(\overrightarrow {OA}  = \overrightarrow {OH}  + \overrightarrow {HA}\)

\( = \overrightarrow {OH}  - \overrightarrow {AH}  = \overrightarrow {OH}  - 2\overrightarrow {OD}\)

\(  = \overrightarrow {OH}  - (\overrightarrow {OB}  + \overrightarrow {OC} ).\)

Suy ra \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OH} .\)

b) Gọi G là trọng tâm tam giác ABC thì

\(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = 3\overrightarrow {HG}\)

\(  = 3\overrightarrow {HO}  + 3\overrightarrow {OG} \)

\(= 3\overrightarrow {HO}  + \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} .\)

Kết hợp với kết quả của câu a), ta có

\(\overrightarrow {HA}  + \overrightarrow {HB}  + \overrightarrow {HC}  = 3\overrightarrow {HO}  + \overrightarrow {OH} \)

\(= 2\overrightarrow {HO} .\)

Loigiaihay.com


Bình chọn:
3.7 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!