Bài 18 trang 8 SBT Hình học 10 Nâng cao


Giải bài 18 trang 8 SBT Hình học 10 Nâng cao. Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DE...

Đề bài

Cho ngũ giác \(ABCDE\). Gọi \(M, N, P, Q\) lần lượt là trung điểm các cạnh \(AB, BC, CD, DE\). Gọi \(I\) và \(J\) lần lượt là trung điểm các đoạn \(MP\) và \(NQ\).

Chứng minh rằng \(IJ// AE\) và \(IJ = \dfrac{1}{4}AE\).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất trung điểm:

Cho điểm I là trung điểm AB, với điểm M bất kì ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \)

Lời giải chi tiết

J là trung điểm của NQ nên với điểm I ta có:

\(\eqalign{  & 2\overrightarrow {IJ}  = \overrightarrow {IQ}  + \overrightarrow {IN}   \cr  & \,\,\,\,\,\,\,\,\, = \overrightarrow {IM}  + \overrightarrow {MQ}  + \overrightarrow {IP}  + \overrightarrow {PN}   \cr  & \,\,\,\,\,\,\,\,\, = \overrightarrow {MQ}  + \overrightarrow {PN}  (do\,\overrightarrow {IM}  + \overrightarrow {IP}  = \overrightarrow 0 )  \cr} \)

\(\begin{array}{l}
\overrightarrow {MQ} = \overrightarrow {MA} + \overrightarrow {AE} + \overrightarrow {EQ} \\
\overrightarrow {MQ} = \overrightarrow {MB} + \overrightarrow {BD} + \overrightarrow {DQ} \\
\Rightarrow 2\overrightarrow {MQ} = \left( {\overrightarrow {MA} + \overrightarrow {MB} } \right)\\
+ \left( {\overrightarrow {AE} + \overrightarrow {BD} } \right) + \left( {\overrightarrow {EQ} + \overrightarrow {DQ} } \right)\\
\Rightarrow 2\overrightarrow {MQ} = \overrightarrow {AE} + \overrightarrow {BD} \\
\Rightarrow \overrightarrow {MQ} = \frac{1}{2}\left( {\overrightarrow {AE} + \overrightarrow {BD} } \right)\\
\Rightarrow \overrightarrow {MQ} + \overrightarrow {PN} = \frac{1}{2}\left( {\overrightarrow {AE} + \overrightarrow {BD} } \right) + \frac{1}{2}\overrightarrow {DB} \\
= \frac{1}{2}\overrightarrow {AE} + \frac{1}{2}\overrightarrow {BD} + \frac{1}{2}\overrightarrow {DB} \\
= \frac{1}{2}\overrightarrow {AE} + \frac{1}{2}\overrightarrow {BD} - \frac{1}{2}\overrightarrow {BD} \\
= \frac{1}{2}\overrightarrow {AE}
\end{array}\)

\( \Rightarrow 2\overrightarrow {IJ}  = \frac{1}{2}\overrightarrow {AE}  \Rightarrow \overrightarrow {IJ}  = \frac{1}{4}\overrightarrow {AE} \)

Suy ra \(IJ // AE\) và \(IJ = \dfrac{1}{4}AE\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí