Bài 33 trang 10 SBT Hình học 10 Nâng cao


Giải bài 33 trang 10 sách bài tập Hình học 10 Nâng cao. Cho tam giác ABC. Hãy xác định các điểm G, P, Q, R, S sao cho:...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC.\)

LG a

Hãy xác định các điểm \(G, P, Q, R, S\) sao cho:

\(\begin{array}{l}\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0;\\2\overrightarrow {PA}  + \overrightarrow {PB}  + \overrightarrow {PC}  = \overrightarrow 0 ;\\\overrightarrow {QA}  + 3\overrightarrow {QB}  + 2\overrightarrow {QC}  = \overrightarrow 0 \\\overrightarrow {RA}  - \overrightarrow {RB}  + \overrightarrow {RC}  = \overrightarrow 0 ;\\5\overrightarrow {SA}  - 2\overrightarrow {SB}  - \overrightarrow {SC}  = \overrightarrow 0 \,\,;\,\,\,\,\,\end{array}\)

Lời giải chi tiết:

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0\)

\(\Leftrightarrow \,\,G\) là trọng tâm tam giác \(ABC\).

\(2\overrightarrow {PA}  + \overrightarrow {PB}  + \overrightarrow {PC}  = \overrightarrow 0 \)

\(\Leftrightarrow \,\,2\overrightarrow {PA}  + 2\overrightarrow {PD}  = \overrightarrow 0 \)(\(D\) là trung điểm của cạnh \(BC\)).

\( \Leftrightarrow \overrightarrow {PA}  + \overrightarrow {PD}  = \overrightarrow 0 \)

Vậy \(P\) là trung điểm của trung tuyến \(AD\).

\(\overrightarrow {QA}  + 3\overrightarrow {QB}  + 2\overrightarrow {QC}  = \overrightarrow 0\)

\( \Leftrightarrow \,\,\overrightarrow {QA}  + \overrightarrow {QB}  + 2(\overrightarrow {QB}  + \overrightarrow {QC} ) = \overrightarrow {0\,} \)

\(\Leftrightarrow \,\,2\overrightarrow {QE}  + 4\overrightarrow {QD}  = \overrightarrow 0 \) (\(E\) là trung điểm cạnh \(AB, D\) là trung điểm của \(BC\)) \( \Leftrightarrow \,\,\overrightarrow {QE}  + 2(\overrightarrow {QE}  + \overrightarrow {ED} ) = \overrightarrow 0 \)

\(\Leftrightarrow \,\,\overrightarrow {EQ}  = \dfrac{2}{3}\overrightarrow {ED} \).

\(\overrightarrow {RA}  - \overrightarrow {RB}  + \overrightarrow {RC}  = \overrightarrow 0 \)

\(\Leftrightarrow \,\,\overrightarrow {BA}  + \overrightarrow {RC}  = \overrightarrow 0 \)

\(\Leftrightarrow \,\,\overrightarrow {CR}  = \overrightarrow {BA} .\)

\(\begin{array}{l}5\overrightarrow {SA}  - 2\overrightarrow {SB}  - \overrightarrow {SC}  = \overrightarrow 0\\ \Leftrightarrow \,\,5\overrightarrow {SA}  - 2(\overrightarrow {SA}  + \overrightarrow {AB} ) - (\overrightarrow {SA}  + \overrightarrow {AC} ) = \overrightarrow 0 \\ \Leftrightarrow \,\overrightarrow {AS}  =  - \overrightarrow {AB}  - \dfrac{1}{2}\overrightarrow {AC} .\end{array}\)

LG b

Với điểm \(O\) bất kì và với các điểm \(G, P, Q, R, S\) ở câu a), chứng minh rằng :

\(\begin{array}{l}\overrightarrow {OG}  = \dfrac{1}{3}\overrightarrow {OA}  + \dfrac{1}{3}\overrightarrow {OB}  + \dfrac{1}{3}\overrightarrow {OC} ;\\\overrightarrow {OP}  = \dfrac{1}{2}\overrightarrow {OA}  + \dfrac{1}{4}\overrightarrow {OB}  + \dfrac{1}{4}\overrightarrow {OC} \\\overrightarrow {OQ}  = \dfrac{1}{6}\overrightarrow {OA}  + \dfrac{1}{2}\overrightarrow {OB}  + \dfrac{1}{3}\overrightarrow {OC} ;\\\,\overrightarrow {OR}  = \overrightarrow {OA}  - \overrightarrow {OB}  + \overrightarrow {OC} \,\,;\\\overrightarrow {OS}  = \dfrac{5}{2}\overrightarrow {OA}  - \overrightarrow {OB}  - \dfrac{1}{2}\overrightarrow {OC} .\end{array}\)

Phương pháp giải:

Hướng dẫn: Xuất phát từ câu a), hãy viết mỗi vec tơ thành hiệu hai vec tơ có điểm đầu là O.

Lời giải chi tiết:

 

\(\begin{array}{l}
+ )\,\,\,\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {OA} - \overrightarrow {OG} + \overrightarrow {OB} - \overrightarrow {OG} + \overrightarrow {OC} - \overrightarrow {OG} = \overrightarrow 0 \\
\Leftrightarrow \left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right) - 3\overrightarrow {OG} = \overrightarrow 0 \\
\Leftrightarrow 3\overrightarrow {OG} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \\
\Leftrightarrow \overrightarrow {OG} = \frac{1}{3}\overrightarrow {OA} + \frac{1}{3}\overrightarrow {OB} + \frac{1}{3}\overrightarrow {OC} \\
+ )\,\,\,2\overrightarrow {PA} + \overrightarrow {PB} + \overrightarrow {PC} = \overrightarrow 0 \\
\Leftrightarrow 2\left( {\overrightarrow {OA} - \overrightarrow {OP} } \right) + \overrightarrow {OB} - \overrightarrow {OP} + \overrightarrow {OC} - \overrightarrow {OP} = \overrightarrow 0 \\
\Leftrightarrow 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} - 4\overrightarrow {OP} = \overrightarrow 0 \\
\Leftrightarrow 4\overrightarrow {OP} = 2\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \\
\Leftrightarrow \overrightarrow {OP} = \frac{1}{2}\overrightarrow {OA} + \frac{1}{4}\overrightarrow {OB} + \frac{1}{4}\overrightarrow {OC} \\
+ )\,\,\,\overrightarrow {QA} + 3\overrightarrow {QB} + 2\overrightarrow {QC} = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {OA} - \overrightarrow {OQ} + 3\left( {\overrightarrow {OB} - \overrightarrow {OQ} } \right) + 2\left( {\overrightarrow {OC} - \overrightarrow {OQ} } \right) = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {OA} + 3\overrightarrow {OB} + 2\overrightarrow {OC} - 6\overrightarrow {OQ} = \overrightarrow 0 \\
\Leftrightarrow 6\overrightarrow {OQ} = \overrightarrow {OA} + 3\overrightarrow {OB} + 2\overrightarrow {OC} \\
\Leftrightarrow \overrightarrow {OQ} = \frac{1}{6}\overrightarrow {OA} + \frac{1}{2}\overrightarrow {OB} + \frac{1}{3}\overrightarrow {OC} \\
+ )\,\,\,\overrightarrow {RA} - \overrightarrow {RB} + \overrightarrow {RC} = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {OA} - \overrightarrow {OR} - \left( {\overrightarrow {OB} - \overrightarrow {OR} } \right) + \overrightarrow {OC} - \overrightarrow {OR} = \overrightarrow 0 \\
\Leftrightarrow \left( {\overrightarrow {OA} - \overrightarrow {OB} + \overrightarrow {OC} } \right) - \overrightarrow {OR} = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {OR} = \overrightarrow {OA} - \overrightarrow {OB} + \overrightarrow {OC} \\
+ )\,\,\,5\overrightarrow {SA} - 2\overrightarrow {SB} - \overrightarrow {SC} = \overrightarrow 0 \\
\Leftrightarrow 5\left( {\overrightarrow {OA} - \overrightarrow {OS} } \right) - 2\left( {\overrightarrow {OB} - \overrightarrow {OS} } \right) - \left( {\overrightarrow {OC} - \overrightarrow {OS} } \right) = \overrightarrow 0 \\
\Leftrightarrow \left( {5\overrightarrow {OA} - 2\overrightarrow {OB} - \overrightarrow {OC} } \right) - 2\overrightarrow {OS} = \overrightarrow 0 \\
\Leftrightarrow 2\overrightarrow {OS} = 5\overrightarrow {OA} - 2\overrightarrow {OB} - \overrightarrow {OC} \\
\Leftrightarrow \overrightarrow {OS} = \frac{5}{2}\overrightarrow {OA} - \overrightarrow {OB} - \frac{1}{2}\overrightarrow {OC}
\end{array}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!