Bài 15 trang 7 SBT Hình học 10 Nâng cao


Giải bài 15 trang 7 sách bài tập Hình học 10 Nâng cao. Cho ba điểm phân biệt A, B, C...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Cho ba điểm phân biệt \(A, B, C.\)

LG a

Chứng minh rằng nếu có một điểm \(I\) và một số \(t\) nào đó sao cho \(\overrightarrow {IA}  = t\overrightarrow {IB}  + (1 - t)\overrightarrow {IC} \) thì với mọi điểm \(I’\), ta có

\(\overrightarrow {I'A}  = t\overrightarrow {I'B}  + (1 - t)\overrightarrow {I'C} \)

Lời giải chi tiết:

Theo giả thiết \(\overrightarrow {IA}  = t\overrightarrow {IB}  + (1 - t)\overrightarrow {IC} \) thì với mọi điểm \(I’\), ta có

\(\overrightarrow {II'}  + \overrightarrow {I'A} \) \( = t(\overrightarrow {II'}  + \overrightarrow {I'B} ) + (1 - t)(\overrightarrow {II'}  + \overrightarrow {I'C} ) \)

\( = t\overrightarrow {II'}  + t\overrightarrow {I'B}  + \left( {1 - t} \right)\overrightarrow {II'}  + \left( {1 - t} \right)\overrightarrow {I'C} \) \(= t\overrightarrow {I'B}  + (1 - t)\overrightarrow {I'C}  + \overrightarrow {II'} \)

Suy ra \(\overrightarrow {I'A}  = t\overrightarrow {I'B}  + (1 - t)\overrightarrow {I'C} \)

LG b

Chứng tỏ rằng \(\overrightarrow {IA}  = t\overrightarrow {IB}  + (1 - t)\overrightarrow {IC} \) là điều kiện cần và đủ  để ba điểm \(A, B, C\) thẳng hàng.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\overrightarrow {IA} = t\overrightarrow {IB} + \left( {1 - t} \right)\overrightarrow {IC} \\
\Leftrightarrow \overrightarrow {IA} = t\left( {\overrightarrow {IA} + \overrightarrow {AB} } \right) + \left( {1 - t} \right)\left( {\overrightarrow {IA} + \overrightarrow {AC} } \right)\\
\Leftrightarrow \overrightarrow {IA} = t\overrightarrow {IA} + t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {IA} + \left( {1 - t} \right)\overrightarrow {AC} \\
\Leftrightarrow \overrightarrow {IA} = \left[ {t\overrightarrow {IA} + \left( {1 - t} \right)\overrightarrow {IA} } \right] + t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {AC} \\
\Leftrightarrow \overrightarrow {IA} = \left( {t + 1 - t} \right)\overrightarrow {IA} + t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {AC} \\
\Leftrightarrow \overrightarrow {IA} = \overrightarrow {IA} + t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {AC} \\
\Leftrightarrow \overrightarrow 0 = t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {AC} \\
\Leftrightarrow t\overrightarrow {AB} + \left( {1 - t} \right)\overrightarrow {AC} = \overrightarrow 0
\end{array}\)

\( \Leftrightarrow \overrightarrow {AB}  = \frac{{t - 1}}{t}\overrightarrow {AC} \) (do \(t\ne 0\))

\(\Leftrightarrow \) ba điểm \(A, B, C\) thẳng hàng.

Loigiaihay.com


Bình chọn:
3.8 trên 6 phiếu
  • Bài 16 trang 8 SBT Hình học 10 Nâng cao

    Giải bài 16 trang 8 sách bài tập Hình học 10 Nâng cao. Điểm M gọi là chia đoạn thẳng AB theo tỉ số k nếu ...

  • Bài 17 trang 8 SBT Hình học 10 Nâng cao

    Giải bài 17 trang 8 sách bài tập Hình học 10 Nâng cao. Cho tam giác ABC. Gọi M, N, P là các điểm chia các đoạn thẳng AB, BC, CA theo cùng tỉ số k. Chứng minh rằng hai tam giác ABC và MNP có cùng trọng tâm.

  • Bài 18 trang 8 SBT Hình học 10 Nâng cao

    Giải bài 18 trang 8 SBT Hình học 10 Nâng cao. Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DE...

  • Bài 19 trang 8 SBT Hình học 10 Nâng cao

    Giải bài 19 trang 8 sách bài tập Hình học 10 Nâng cao. Cho tam giác ABC. Các điểm M, N, P lần lượt chia các đoạn thẳng AB, BC, CA theo các tỉ số lần lượt là m, n, p (đều khác 1). Chứng minh rằng

  • Bài 20 trang 8 SBT Hình học 10 Nâng cao

    Giải bài 20 trang 8 sách bài tập Hình học 10 Nâng cao. Cho tam giác ABC và các điểm A_1, B_1, C_1 lần lượt nằm trên các đường thẳng BC, CA, AB...

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!