Bài 26 trang 9 SBT Hình học 10 Nâng cao


Giải bài 26 trang 9 sách bài tập Hình học 10 Nâng cao. Cho điểm O cố định và đường thẳng d đi qua hai điểm A, B cố định. Chứng minh rằng điểm M thuộc đường thẳng d khi và chỉ khi có số \alpha sao cho OM = \alpha OA + (1 - \alpha )OB. Với điều kiện nào của \alpha thì M thuộc đoạn thẳng AB?

Đề bài

Cho điểm \(O\) cố định và đường thẳng \(d\) đi qua hai điểm \(A, B\) cố định. Chứng minh rằng điểm M thuộc đường thẳng \(d\) khi và chỉ khi có số \(\alpha \) sao cho \(\overrightarrow {OM}  = \alpha \overrightarrow {OA}  + (1 - \alpha )\overrightarrow {OB} \).

Với điều kiện nào của \(\alpha \) thì \(M\) thuộc đoạn thẳng \(AB\)?

Lời giải chi tiết

Ta có

\(\eqalign{
& \overrightarrow {OM} = \alpha \overrightarrow {OA} + (1 - \alpha )\overrightarrow {OB} \,\, \cr 
& \Leftrightarrow \,\,\,\overrightarrow {OM} = \alpha (\overrightarrow {OA} - \overrightarrow {OB} ) + \overrightarrow {OB} \cr 
& \Leftrightarrow \overrightarrow {OM} - \overrightarrow {OB} = \alpha (\overrightarrow {OA} - \overrightarrow {OB} )\,\,\, \cr 
& \Leftrightarrow \overrightarrow {BM} = \alpha \overrightarrow {BA} \,\, \Leftrightarrow M \in d. \cr} \)

Vì \(\overrightarrow {BM}  = \alpha \overrightarrow {BA} \) nên \(M\) thuộc đoạn thẳng AB khi và chỉ khi \(0 \le \alpha  \le 1\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí