Bài 34 trang 10 SBT Hình học 10 Nâng cao


Đề bài

Cho tam giác \(ABC\) và một điểm \(O\) bất kì. Chứng minh rằng với mọi điểm \(M\) ta luôn luôn tìm được ba số \(\alpha \,,\beta \,,\gamma \) sao cho \(\alpha  + \beta  + \gamma  = 1\) và \(\overrightarrow {OM}  = \alpha \overrightarrow {OA}  + \beta \overrightarrow {OB}  + \gamma \overrightarrow {OC} \). Nếu điểm \(M\) trùng với trọng tâm tam giác \(ABC\) thì các số \(\alpha \,,\beta \,,\gamma \) bằng bao nhiêu?

Lời giải chi tiết

Vì hai vec tơ \(\overrightarrow {CA} \,,\,\,\overrightarrow {CB} \) không cùng phương nên ta có các số \(\alpha \,,\,\,\beta \) sao cho \(\overrightarrow {CM}  = \alpha \overrightarrow {CA}  + \beta \overrightarrow {CB} \), hay là

\(\overrightarrow {OM}  - \overrightarrow {OC} = \alpha (\overrightarrow {OA}  - \overrightarrow {OC} ) + \beta (\overrightarrow {OB}  - \overrightarrow {OC} ).\)

Vậy \(\overrightarrow {OM}  = \alpha \overrightarrow {OA}  + \beta \overrightarrow {OB}  + (1 - \alpha  - \beta )\overrightarrow {OC} .\)

Đặt \(\gamma  = 1 - \alpha  - \beta \) thì \(\alpha  + \beta  + \gamma  = 1\) và \(\overrightarrow {OM}  = \alpha \overrightarrow {OA}  + \beta \overrightarrow {OB}  + \gamma \overrightarrow {OC} \).

Nếu M trùng G thì ta có \(\overrightarrow {OG}  = \dfrac{1}{3}(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} ).\)

Vậy \(\alpha  = \beta  = \gamma  = \dfrac{1}{3}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.