Bài 5.5 trang 198 SBT đại số và giải tích 11


Giải bài 5.5 trang 198 sách bài tập đại số và giải tích 11. Chứng minh rằng hàm số...

Đề bài

Chứng minh rằng hàm số

\(y = {\rm{sign}}x = \left\{ \matrix{
1,\,\,{\rm{ nếu }}\,\,x > 0{\rm{ }} \hfill \cr 
0,\,\,{\rm{ nếu }}\,\,x = 0 \hfill \cr 
- 1,\,\,{\rm{ nếu }}\,\,x < 0 \hfill \cr} \right.\) không có đạo hàm tại x = 0.

Phương pháp giải - Xem chi tiết

Chứng minh hàm số không liên tục tại \(x=0\) và suy ra kết luận.

Lời giải chi tiết

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} 1 = 1\\\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - 1} \right) =  - 1\\ \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\end{array}\)

Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\) nên hàm số không liên tục tại \(x = 0\).

Do đó không có đạo hàm tại \(x = 0\).

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài