Bài 3.44 trang 132 SBT hình học 12


Giải bài 3.44 trang 132 sách bài tập hình học 12. Cho mặt phẳng : 2x + y +z – 1 = 0 và đường thẳng d. Gọi M là giao điểm của d và , hãy viết phương trình của đường thẳng đi qua M vuông góc với d và nằm trong ...

Đề bài

Cho mặt phẳng \((\alpha )\) : 2x + y  +z – 1 = 0  và đường thẳng d: \(\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{{z + 2}}{{ - 3}}\)

Gọi M là giao điểm của d và \((\alpha )\), hãy viết phương trình của đường thẳng \(\Delta \)  đi qua M vuông góc với d và nằm trong \((\alpha )\).

Phương pháp giải - Xem chi tiết

- Tìm giao điểm của \(d\) và \(\left( \alpha  \right)\).

- Đường thẳng \(\Delta \) vuông góc với \(d\) và nằm trong \(\left( \alpha  \right)\) \( \Rightarrow \overrightarrow {{u_\Delta }}  = \left[ {\overrightarrow {{u_d}} ,\overrightarrow {{n_{\left( \alpha  \right)}}} } \right]\)

Lời giải chi tiết

Phương trình tham số của đường thẳng d: \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = t}\\{z =  - 2 - 3t}\end{array}} \right.\)

Xét phương trình \(2(1 + 2t) + t + ( - 2 – 3t) – 1 = 0\) \( \Leftrightarrow 2t - 1 = 0\) \( \Leftrightarrow t = \dfrac{1}{2}\)

Vậy đưởng thẳng d cắt mặt phẳng \((\alpha )\) tại điểm \(M\left( {2;\dfrac{1}{2}; - \dfrac{7}{2}} \right)\).

Ta có vecto pháp tuyến của mặt phẳng \((\alpha )\) và vecto chỉ phương của đường thẳng d lần lượt là  \(\overrightarrow {{n_\alpha }}  = (2;1;1)\) và \(\overrightarrow {{u_d}}  = (2;1; - 3)\).

Gọi \(\overrightarrow {{u_\Delta }} \) là vecto pháp tuyến của \(\Delta \), ta có \(\overrightarrow {{u_\Delta }}  \bot \overrightarrow {{n_\alpha }} \) và \(\overrightarrow {{u_\Delta }}  \bot \overrightarrow {{u_d}} \).

Ta có: \(\left[ {\overrightarrow {{n_\alpha }} ,\overrightarrow {{u_d}} } \right] = \left( { - 4;8;0} \right)\) nên chọn \(\overrightarrow {{u_\Delta }}  = \left( {1; - 2;0} \right)\)

Vậy phương trình tham số của \(\Delta \) là  \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + t}\\{y = \dfrac{1}{2} - 2t}\\{z =  - \dfrac{7}{2}}\end{array}} \right.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài