Bài 3.43 trang 132 SBT hình học 12


Giải bài 3.43 trang 132 sách bài tập hình học 12. Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Bằng phương pháp tọa độ hãy tính khoảng cách giữa hai đường thẳng CA’ và DD’.

Đề bài

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Bằng phương pháp tọa độ hãy tính khoảng cách giữa hai đường thẳng CA’ và  DD’.

Phương pháp giải - Xem chi tiết

- Chọn hệ trục tọa độ gốc \(C\left( {0;0;0} \right)\) và xác định tọa độ các điểm còn lại.

- Viết phương trình mặt phẳng chứa \(CA'\) và song song \(DD'\).

- Tính khoảng cách \(d\left( {CA',DD'} \right) = d\left( {DD',\left( \alpha  \right)} \right) = d\left( {D,\left( \alpha  \right)} \right)\)

Lời giải chi tiết

Ta chọn hệ trục tọa độ sao cho: C là gốc tọa độ, \(\overrightarrow {CD}  = a\overrightarrow i ;\overrightarrow {CB}  = a\overrightarrow j ;\overrightarrow {CC'}  = a\overrightarrow k \)

Trong hệ tọa độ vừa chọn ta có: C(0; 0; 0), A’(a; a ; a), D(a,; 0;0), D’(a; 0; a)

\(\overrightarrow {CA'}  = (a;a;a),\overrightarrow {{\rm{DD}}'}  = (0;0;a)\)

Gọi \((\alpha )\) là mặt phẳng chứa \(\overrightarrow {CA'} \) và song song với  \(\overrightarrow {DD'} \).

Mặt phẳng \((\alpha )\) có vecto pháp tuyến là: \(\overrightarrow n  = \left[ {\overrightarrow {CA'} ,\overrightarrow {{\rm{DD}}'} } \right] = ({a^2}; - {a^2};0)\) hay x – y = 0

Phương trình tổng quát của \((\alpha )\) là x – y = 0.

Ta có: \(d\left( {CA',DD'} \right) = d\left( {D,\left( \alpha  \right)} \right)\) \( = \dfrac{{\left| { - a} \right|}}{{\sqrt {1 + 1 + 0} }} = \dfrac{a}{{\sqrt 2 }}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài