Bài 3.36 trang 131 SBT hình học 12


Giải bài 3.36 trang 131 sách bài tập hình học 12. Tính khoảng cách từ điểm A(1; 0; 1) đến đường thẳng...

Đề bài

Tính khoảng cách từ điểm A(1; 0; 1) đến đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{y}{2} = \dfrac{z}{1}\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính khoảng cách từ một điểm đến đường thẳng: \(d\left( {{M_0},\Delta } \right) = \dfrac{{\left| {\left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{M_0}A} } \right]} \right|}}{{\left| {\overrightarrow {{u_\Delta }} } \right|}}\)

Lời giải chi tiết

Đường thẳng \(\Delta \) đi qua điểm M0(1; 0; 0) và có vecto chỉ phương \(\overrightarrow u  = (2;2;1)\).

Ta có \(\overrightarrow {{M_0}A}  = (0;0;1),\)\(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow {{M_0}A} } \right] = (2; - 2;0)\)

\(d(A,\Delta ) = \dfrac{{|\overrightarrow n |}}{{|\overrightarrow u |}} = \dfrac{{\sqrt {4 + 4 + 0} }}{{\sqrt {4 + 4 + 1} }} = \dfrac{{2\sqrt 2 }}{3}\)

Vậy khoảng cách từ điểm A đến \(\Delta \) là \(\dfrac{{2\sqrt 2 }}{3}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài