Bài 3.38 trang 131 SBT hình học 12


Đề bài

Tính khoảng cách giữa các cặp đường thẳng \(\Delta \) và \(\Delta '\) trong các trường hợp sau:

a) \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y =  - 1 - t}\\{z = 1}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = 2 - 3t'}\\{y = 2 + 3t'}\\{z = 3t'}\end{array}} \right.\)

b) \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z =  - 1 + 2t}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 2 - 3t'}\\{z =  - 3t'}\end{array}} \right.\)

Phương pháp giải - Xem chi tiết

- Viết phương trình mặt phẳng chứa một đường thẳng và song song với đường thẳng còn lại.

- Tính khoảng cách giữa hai đường thẳng chéo nhau, sử dụng công thức:

\(d\left( {\Delta ,\Delta '} \right) = d\left( {\Delta ,\left( \alpha  \right)} \right)\) \( = \dfrac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

ở đó \(\Delta ' \subset \left( \alpha  \right),\Delta //\left( \alpha  \right)\) và \(M \in \Delta \).

Lời giải chi tiết

a) Gọi \((\alpha )\) là mặt phẳng chứa \(\Delta \) và song song với \(\Delta '\).

Hai vecto có giá song song hoặc nằm trên \((\alpha )\) là:  \(\overrightarrow u  = (1; - 1;0)\)  và \(\overrightarrow u ' = ( - 1;1;1)\).

Suy ra  \(\overrightarrow {{n_\alpha }}  = \left[ {\overrightarrow {u'} ,\overrightarrow u } \right] = \left( { - 1; - 1;0} \right)\)

\((\alpha )\) đi qua điểm M1(1; -1; 1) thuộc \(\Delta \) và có vecto pháp tuyến:  \(\overrightarrow {{n_{\alpha '}}}  = (1;1;0)\)

Vậy phưong trình của mặt phẳng \((\alpha )\) có dạng \(x – 1 + y + 1=0 \) hay \(x + y = 0\)

Ta có: M2((2; 2; 0) thuộc đường thẳng \(\Delta '\)

\(d(\Delta ,\Delta ') = d({M_2},(\alpha ))\)\( = \dfrac{{|2 + 2|}}{{\sqrt {1 + 1} }} = 2\sqrt 2 \)

b) Hai đường thẳng \(\Delta \) và \(\Delta '\) có phương trình là:

\(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z =  - 1 + 2t}\end{array}} \right.\) và \(\Delta ':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 2 - 3t'}\\{z =  - 3t'}\end{array}} \right.\)

Phương trình mặt phẳng \((\alpha )\) chứa \(\Delta \) và song song với \(\Delta '\) là 9x + 5y – 2z – 22 = 0

Lấy điểm M’(0; 2; 0) trên \(\Delta '\).

Ta có \(d(\Delta ,\Delta ') = d(M',(\alpha ))\)\( = \dfrac{{|5.(2) - 22|}}{{\sqrt {81 + 25 + 4} }} = \dfrac{{12}}{{\sqrt {110} }}\).

Vậy khoảng cách giữa hai đường thẳng \(\Delta \) và \(\Delta '\) là \(\dfrac{{12}}{{\sqrt {110} }}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.