Câu hỏi 7 trang 80 SGK Hình học 12


Giải câu hỏi 7 trang 80 SGK Hình học 12. Tính khoảng cách giữa hai mặt phẳng (α) và (β) cho bởi các phương trình sau đây...

Đề bài

Tính khoảng cách giữa hai mặt phẳng (α) và (β) cho bởi các phương trình sau đây: (α): x – 2 = 0; (β): x – 8 = 0.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Chứng minh hai mặt phẳng song song.

- Tính khoảng cách giữa hai mặt phẳng \(d\left( {\left( \alpha  \right),\left( \beta  \right)} \right) = d\left( {M,\left( \beta  \right)} \right) \) ở đó tọa điểm \(M\) chọn trước thuộc \((\alpha )\).

- Công thức khoảng cách: \(d\left( {{M_0},\left( P \right)} \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\) 

Lời giải chi tiết

Ta thấy: \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) cùng có VTPT \(\overrightarrow n  = \left( {1;0;0} \right)\).

Dễ thấy điểm \(M\left( {2;0;0} \right) \in \left( \alpha  \right)\) nhưng \(M\left( {2;0;0} \right) \notin \left( \beta  \right)\) nên \(\left( \alpha  \right)//\left( \beta  \right)\).

Từ đó \(d\left( {\left( \alpha  \right),\left( \beta  \right)} \right) = d\left( {M,\left( \beta  \right)} \right) = \dfrac{{\left| {2 - 8} \right|}}{{\sqrt {{1^2} + {0^2} + {0^2}} }} = 6\)

Vậy khoảng cách giữa hai mặt phẳng bằng \(6\).

Loigiaihay.com


Bình chọn:
3 trên 4 phiếu

Các bài liên quan: - Bài 2. Phương trình mặt phẳng

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài