Bài 1 trang 80 SGK Hình học 12

Bình chọn:
3.9 trên 8 phiếu

Giải bài 1 trang 80 SGK Hình học 12. Viết phương trình mặt phẳng.

Đề bài

Viết phương trình mặt phẳng:

a) Đi qua điểm \(M(1; -2; 4)\) và nhận \(\overrightarrow{n}= (2; 3; 5)\) làm vectơ pháp tuyến.

b) Đi qua điểm \(A(0 ; -1 ; 2)\) và song song với giá của các vectơ \(\overrightarrow{u}(3; 2; 1)\) và \(\overrightarrow{v}(-3; 0; 1)\).

c) Đi qua ba điểm \(A(-3 ; 0 ; 0), B(0 ; -2 ; 0)\) và  \(C(0 ; 0 ; -1)\).

Phương pháp giải - Xem chi tiết

a) Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT  \(\overrightarrow n  = \left( {a;\;b;\;c} \right)\) có dạng:  \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)

b) Mặt phẳng \((P)\) song song với các vecto  \(\overrightarrow u ;\;\;\overrightarrow v  \Rightarrow \) VTPT của \((P)\) là:  \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow u ,\;\overrightarrow v } \right].\)

Sau đó áp dụng công thức như câu a để lập phương trình mặt phẳng.

c) Mặt phẳng \((P)\) đi qua \(3\) điểm \(A, \, \, B\) và \(C\) có VTPT:  \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right].\)

Khi đó áp dụng công thức như câu a để lập phương trình mặt phẳng.

Lời giải chi tiết

a) Mặt phẳng \((P)\) đi qua điểm \(M(1; -2; 4)\) và nhận \(\overrightarrow{n}= (2; 3; 5)\) làm vectơ pháp tuyến có phương trình:

\((P) :2(x - 1) + 3(x +2) + 5(z - 4) = 0\) \(⇔  2x + 3y + 5z -16 = 0\).

b) Gọi \((Q)\) là mặt phẳng cần lập. Theo đề bài ta có: \((Q)\) song song với \(\overrightarrow u ;\;\;\overrightarrow v.\)

Khi đó ta có VTPT của \((Q)\) là: \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow u ,\;\overrightarrow v } \right].\) \( \Rightarrow \overrightarrow {{n_Q}}  = \left( {\left| {\begin{array}{*{20}{c}}2&1\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&3\\1&{ - 3}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}3&2\\{ - 3}&0\end{array}} \right|} \right) \\= \left( {2;\; - 6;\;6} \right) = 2\left( {1; - 3;\;3} \right).\)

Phương trình mặt phẳng \((Q)\) có dạng:

\((Q) :x - 0 - 3(y + 1) + 3(z - 2) = 0\)

\(  ⇔ x - 3y + 3z - 9 = 0\)

 c) Gọi \(R)\) là mặt phẳng qua \(A, \, B, \, C\) khi đó \(\overrightarrow{AB}\), \(\overrightarrow{AC}\) là cặp vectơ chỉ phương của \((R)\).

Ta có: \( \overrightarrow{AB} = (3;-2;0)\) và \(\overrightarrow{AC}= (3;\, 0; \, -1).\)

 Khi đó: \(\overrightarrow{n_R}=\left [\overrightarrow{AB},\overrightarrow{AC} \right ] \) \(= \left( \begin{vmatrix} -2 &0 \\ 0 & -1 \end{vmatrix};\begin{vmatrix} 0 & 3\\ -1& 3 \end{vmatrix}; \begin{vmatrix} 3 & -2\\ 3& 0 \end{vmatrix} \right)\\ = (2 ; 3 ; 6).\)

Vậy phương trình mặt phẳng \((R)\) có dạng: \(2x + 3y + 6(z+1)=0 \)

\( \Leftrightarrow 2x + 3y +6z + 6 = 0.\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan