Bài 4 trang 80 SGK Hình học 12

Bình chọn:
2.7 trên 23 phiếu

Giải bài 4 trang 80 SGK Hình học 12. Lập phương trình mặt phẳng.

Đề bài

Lập phương trình mặt phẳng :

a) Chứa trục \(Ox\) và điểm \(P(4 ; -1 ; 2)\);

b) Chứa trục \(Oy\) và điểm \(Q(1 ; 4 ;-3)\);

c) Chứa trục \(Oz\) và điểm \(R(3 ; -4 ; 7)\);

Phương pháp giải - Xem chi tiết

+) Mặt phẳng \((P)\) chứa các vecto  \(\overrightarrow u ;\;\;\overrightarrow v  \Rightarrow \) VTPT của \((P)\) là:  \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow u ,\;\overrightarrow v } \right].\)

+) Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT  \(\overrightarrow n  = \left( {a;\;b;\;c} \right)\) có dạng:  \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)

Lời giải chi tiết

a) Gọi \((α)\) là mặt phẳng qua \(P\) và chứa trục \(Ox\), thì \((α)\) qua điểm \(O(0 ; 0 ; 0)\) và chứa giá của các vectơ \(\overrightarrow{OP} (4 ; -1 ; 2)\)  và \(\overrightarrow{i}( 1 ; 0 ;0)\). Khi đó \(\overrightarrow{n}=\left [\overrightarrow{OP},\overrightarrow{i} \right ]  = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&2\\0&0\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}2&4\\0&1\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}4&{ - 1}\\1&0\end{array}} \right|} \right)=(0 ; 2 ; 1)\) là vectơ pháp tuyến của \((α)\).

Phương trình mặt phẳng \((α)\) có dạng: \(2y + z = 0\).

b) Mặt phẳng \((β)\) qua điểm \(Q(1 ; 4 ; -3)\) và chứa trục \(Oy\) thì \((β)\) qua điểm \(O( 0 ; 0 ; 0)\) có \(\overrightarrow{OQ} (1 ; 4 ; -3)\) và \(\overrightarrow{j}(0 ; 1 ; 0)\) là cặp vectơ chỉ phương.

Ta có VTPT của \((β)\) là:\(\overrightarrow {{n_\beta }} = \left[ {\overrightarrow {OQ} ,\;\overrightarrow j } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&{ - 3}\\1&0\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}{ - 3}&1\\0&0\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}1&4\\0&1\end{array}} \right|} \right) = \left( {3;\;0;\;1} \right).\)

Phương trình mặt phẳng \((β)\) có dạng : \(3x + z = 0\).

c) Mặt phẳng \((ɣ)\) qua điểm \(R(3 ; -4 ; 7)\) và chứa trục \(Oz\) chứa giá của các vectơ \(\overrightarrow{OR}(3 ; -4 ; 7)\) và \(\overrightarrow{k}(0 ; 0 ; 1)\) nhận \(2\) vectơ này làm vectơ chỉ phương.

Khi đó VTPT của \((ɣ)\) là: \( \overrightarrow {{n_\gamma }} = \left[ {\overrightarrow {OR} ,\;\overrightarrow k } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 4}&7\\0&1\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}7&3\\1&0\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}3&{ - 4}\\0&0\end{array}} \right|} \right)\\ = \left( { - 4;\; - 3;\;0} \right) = - \left( {4;\;3;\;0} \right).\)

Phương trình mặt phẳng \((ɣ)\) có dạng: \(4x + 3y = 0\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan