Bài 4 trang 80 SGK Hình học 12


Giải bài 4 trang 80 SGK Hình học 12. Lập phương trình mặt phẳng.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Lập phương trình mặt phẳng :

LG a

a) Chứa trục \(Ox\) và điểm \(P(4 ; -1 ; 2)\);

Phương pháp giải:

+) Mặt phẳng \((P)\) chứa các vecto  \(\overrightarrow u ;\;\;\overrightarrow v  \Rightarrow \) VTPT của \((P)\) là:  \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow u ,\;\overrightarrow v } \right].\)

+) Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT  \(\overrightarrow n  = \left( {a;\;b;\;c} \right)\) có dạng:  \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)

Lời giải chi tiết:

Gọi \((α)\) là mặt phẳng qua \(P\) và chứa trục \(Ox\), thì \((α)\) qua điểm \(O(0 ; 0 ; 0)\) và \(\overrightarrow {{n_{\left( \alpha  \right)}}}  \bot \overrightarrow {OP} ,\overrightarrow {{n_{\left( \alpha  \right)}}}  \bot \overrightarrow i \).

Khi đó \(\overrightarrow {{n_{\left( \alpha  \right)}}}=\left [\overrightarrow{OP},\overrightarrow{i} \right ]  \) \(= \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&2\\0&0\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}2&4\\0&1\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}4&{ - 1}\\1&0\end{array}} \right|} \right)\) \(=(0 ; 2 ; 1)\) là vectơ pháp tuyến của \((α)\).

Phương trình mặt phẳng \((α)\) có dạng: \(0\left( {x - 0} \right) + 2\left( {y - 0} \right) + 1.\left( {z - 0} \right) = 0\) hay \(2y + z = 0\).

LG b

b) Chứa trục \(Oy\) và điểm \(Q(1 ; 4 ;-3)\);

Lời giải chi tiết:

Mặt phẳng \((β)\) qua điểm \(Q(1 ; 4 ; -3)\) và chứa trục \(Oy\) thì \((β)\) qua điểm \(O( 0 ; 0 ; 0)\) có \(\overrightarrow{OQ} (1 ; 4 ; -3)\) và \(\overrightarrow{j}(0 ; 1 ; 0)\) là cặp vectơ chỉ phương.

Ta có VTPT của \((β)\) là:\(\overrightarrow {{n_\beta }} \) \(= \left[ {\overrightarrow {OQ} ,\;\overrightarrow j } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&{ - 3}\\1&0\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}{ - 3}&1\\0&0\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}1&4\\0&1\end{array}} \right|} \right) \) \(= \left( {3;\;0;\;1} \right).\)

Phương trình mặt phẳng \((β)\) có dạng : \(3\left( {x - 0} \right) + 0\left( {y - 0} \right) + 1\left( {z - 0} \right) = 0\) hay \(3x + z = 0\).

LG c

c) Chứa trục \(Oz\) và điểm \(R(3 ; -4 ; 7)\);

Lời giải chi tiết:

Mặt phẳng \((ɣ)\) qua điểm \(R(3 ; -4 ; 7)\) và chứa trục \(Oz\) nên nó đi qua \(O(0;0;0)\) và nhận cặp vectơ \(\overrightarrow{OR}(3 ; -4 ; 7)\) và \(\overrightarrow{k}(0 ; 0 ; 1)\) làm vectơ chỉ phương.

Ta có: \(\left[ {\overrightarrow {OR} ,\;\overrightarrow k } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 4}&7\\0&1\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}7&3\\1&0\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}3&{ - 4}\\0&0\end{array}} \right|} \right)\\ = \left( { - 4;\; - 3;\;0} \right) \) \(= - \left( {4;\;3;\;0} \right).\)

Chọn \( \overrightarrow {{n_\gamma }} =\left( {4;\;3;\;0} \right)\), phương trình mặt phẳng \((ɣ)\) có dạng: \(4\left( {x - 0} \right) + 3\left( {y - 0} \right) + 0\left( {z - 0} \right) = 0\) hay \(4x + 3y = 0\).

Loigiaihay.com


Bình chọn:
2.9 trên 27 phiếu

Các bài liên quan: - Bài 2. Phương trình mặt phẳng

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.


Gửi bài