Bài 3 trang 80 SGK Hình học 12


Giải bài 3 trang 80 SGK Hình học 12. a)Lập phương trình của các mặt phẳng tọa độ (Oxy), (Oyz), (Ozx).

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

LG a

a) Lập phương trình của các mặt phẳng tọa độ \((Oxy), (Oyz), (Ozx)\).

Phương pháp giải:

Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT  \(\overrightarrow n  = \left( {a;\;b;\;c} \right)\) có dạng:  \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)

Lời giải chi tiết:

Mặt phẳng \((Oxy)\) qua điểm \(O(0 ; 0 ; 0)\) và có vectơ pháp tuyến \(\overrightarrow{k}(0 ; 0 ; 1)\) nên:

\((Oxy): 0.(x - 0) +0.(y - 0) +1.(z - 0) = 0\) hay \(z = 0\).

Tương tự:

\((Oyz)\): \(x = 0\)

\((Ozx)\): \(y = 0\).

LG b

b) Lập phương trình của các mặt phẳng đi qua điểm \(M(2 ; 6 ; -3)\) và lần lượt song song với các mặt phẳng tọa độ.

Phương pháp giải:

Cho hai mặt phẳng: \(\left( P \right)//\left( Q \right)\) thì \(\overrightarrow {{n_P}}  = \overrightarrow {{n_Q}} .\)

Sau đó dựa vào công thức để lập phương trình mặt phẳng cần lập.

Lời giải chi tiết:

Mặt phẳng \((P)\) qua điểm \(M(2; 6; -3)\) song song với mặt phẳng \((Oxy)\) nên nhận \(\overrightarrow{k}(0 ; 0 ; 1)\) làm VTPT.

\((P):0\left( {x - 2} \right) + 0\left( {y - 6} \right) + 1\left( {z + 3} \right) = 0\) \( \Leftrightarrow z +3 = 0\).

Tương tự mặt phẳng \((Q)\) qua \(M\) và song song với mặt phẳng \((Oyz)\) có phương trình:

\((Q):1\left( {x - 2} \right) + 0\left( {y - 6} \right) + 0\left( {z + 3} \right) = 0\) \(  \Leftrightarrow x - 2 = 0\).

Mặt phẳng qua \(M\) song song với mặt phẳng \((Oxz)\) có phương trình:

\(0\left( {x - 2} \right) + 1\left( {y - 6} \right) + 0\left( {z + 3} \right) = 0\) \(  \Leftrightarrow y - 6 = 0\).

Loigiaihay.com


Bình chọn:
3.5 trên 22 phiếu

Các bài liên quan: - Bài 2. Phương trình mặt phẳng

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài