Giải bài 2 trang 80 SGK Hình học 12


Đề bài

Viết phương trình mặt phẳng trung trực của đoạn thẳng \(AB\) với \(A(2 ; 3 ; 7)\) và \(B(4 ; 1 ; 3)\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Gọi mặt phẳng \((P)\) là mặt phẳng cần tìm. Khi đó mặt phẳng \((P)\) đi qua trung điểm \(I\) của đoạn thẳng \(AB\) và vuông góc với \(AB\) hay \((P)\) nhận  vecto  \(\overrightarrow{AB}\) làm VTPT.

Sau đó ta áp dụng công thức dưới đây để lập phương trình:

Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT  \(\overrightarrow n  = \left( {a;\;b;\;c} \right)\) có dạng:  \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)

Lời giải chi tiết

Gọi \(I\) là trung điểm của \(AB\) 

\( \Rightarrow \left\{ \begin{array}{l}
{x_I} = \dfrac{{{x_A} + {x_B}}}{2} = 3\\
{y_I} = \dfrac{{{y_A} + {y_B}}}{2} = 2\\
{z_I} = \dfrac{{{z_A} + {z_B}}}{2} = 5
\end{array} \right. \Rightarrow I\left( {3;\;2;\;5} \right).\)

Khi đó mặt phẳng \((P)\) cần lập đi qua \(I\) và nhận \(\overrightarrow{AB}\) làm VTPT.

Có \(\overrightarrow{AB}(2 ; -2; -4)\) và \(I(3 ; 2 ; 5)\) nên phương trình mặt phẳng \((P)\) là:

\(2(x - 3) - 2(y - 2) - 4(z - 5) = 0\)

\( \Leftrightarrow 2x - 2y - 4z + 18 = 0\)

\( \Leftrightarrow x -y -2z + 9 = 0.\)

Loigiaihay.com


Bình chọn:
4.2 trên 23 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.