Bài 8 trang 81 SGK Hình học 12

Bình chọn:
3.5 trên 13 phiếu

Giải bài 8 trang 81 SGK Hình học 12. Xác định giá trị của m và n để mỗi cặp mặt phẳng sau đây là một cặp mặt phẳng song song với nhau:

Đề bài

Xác định giá trị của \(m\) và \(n\) để mỗi cặp mặt phẳng sau đây là một cặp mặt phẳng song song với nhau:

a) \(2x + my + 3z - 5 = 0\) và \(nx - 8y - 6z + 2 = 0\);

b) \(3x - 5y + mz - 3 = 0\) và \(2x + ny - 3z + 1 = 0\);

Phương pháp giải - Xem chi tiết

Cho hai mặt phẳng: \((\alpha): a_1x+b_1y+c_1z+d_1=0\) và \((\beta): a_2x+b_2y+c_2z+d_2=0\).

Khi đó \(\left( \alpha \right)//\left( \beta \right) \Leftrightarrow \left\{ \begin{array}{l}\left( {{a_1};\;{b_1};\;{c_1}} \right) = k\left( {{a_2};\;{b_2};\;{c_2}} \right)\\{d_1} \ne k{d_2}\end{array} \right.\) hay \(\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{c_2}}} \ne \frac{{{d_1}}}{{{d_2}}}.\)

Lời giải chi tiết

Hai mặt phẳng  \(2x + my + 3z - 5 = 0\)  và \(nx - 8y - 6z + 2 = 0\) song song với nhau khi và chỉ khi:

\(\frac{2}{n}=\frac{m}{-8}=\frac{3}{-6}\neq \frac{-5}{2}  \Leftrightarrow \left\{ \begin{array}{l}3n = - 12\\- 6m = - 24\end{array} \right.⇔ \left\{\begin{matrix} n= -4 & \\ m=4& \end{matrix}\right.\).

b) Hai mặt phẳng \(3x - 5y + mz - 3 = 0\) và \(2x + ny - 3z + 1 = 0\)  khi và chỉ khi :

\(\frac{3}{2}=-\frac{5}{n}=\frac{m}{-3}\neq -\frac{3}{1} \Leftrightarrow \left\{ \begin{array}{l}3n = - 10\\2m = - 9\end{array} \right.⇔ \left\{\begin{matrix} n=-\frac{10}{3} & \\ m=-\frac{9}{2} & \end{matrix}\right..\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan