
Đề bài
Trong không gian \(Oxyz\) cho ba điểm \(A(2; -1; 3), B(4; 0; 1), C(-10; 5; 3)\). Hãy tìm tọa độ một vecto pháp tuyến của mặt phẳng \((ABC)\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Véc tơ pháp tuyến của mặt phẳng vuông góc với cả hai véc tơ \(\overrightarrow {AB}\) và \(\overrightarrow {AC}\)
- Tính tích có hướng của hai véc tơ và chọn ra một véc tơ pháp tuyến của mặt phẳng.
Lời giải chi tiết
Ta có: \(\overrightarrow {AB} = (2,1, - 2);\;\;\overrightarrow {AC} = ( - 12,6,0)\)
\(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{l}}
{1{\mkern 1mu} {\mkern 1mu} \; - 2}\\
{6{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \;{\mkern 1mu} \;{\mkern 1mu} 0}
\end{array}} \right|,\left| {\begin{array}{*{20}{l}}
{ - 2{\mkern 1mu} {\mkern 1mu} \;\;\;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} 2}\\
{0{\mkern 1mu} {\mkern 1mu} \;\;{\mkern 1mu} - 12}
\end{array}} \right|,\left| {\begin{array}{*{20}{l}}
{2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \;\;{\mkern 1mu} \;\;1}\\
{ - 12\;\;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} 6}
\end{array}} \right|} \right) = (12,24,24) = 12(1,2,2){\rm{ }}\)
Chọn \(\overrightarrow n (1,2,2)\) là pháp tuyến của mặt phẳng \((ABC)\).
Lưu ý: Các em thể chọn véc tơ pháp tuyến khác , chẳng hạn như \(\overrightarrow n (-1,-2,-2)\) hay \(\overrightarrow n (12,24,24)\) nhưng để tiện cho tính toán ta thường chọn tọa độ đơn giản nhất \(\overrightarrow n (1,2,2)\)
Loigiaihay.com
Hãy tìm một vecto pháp tuyến của mặt phẳng (α)...
Lập phương trình tổng quát của mặt phẳng ...
Nếu B = 0 hoặc C = 0 thì mặt phẳng (α) có đặc điểm gì ?...
Nếu A = C = 0 và B ≠ 0 hoặc nếu B = C = 0 và A ≠ 0 thì mặt phẳng (α) có đặc điểm gì?...
Cho hai mặt phẳng (α) và (β) có phương trình...
Tính khoảng cách giữa hai mặt phẳng (α) và (β) cho bởi các phương trình sau đây...
Viết phương trình mặt phẳng.
Viết phương trình mặt phẳng trung trực của đoạn thẳng AB
a)Lập phương trình của các mặt phẳng tọa độ (Oxy), (Oyz), (Ozx).
Lập phương trình mặt phẳng.
Viết phương trình mặt phẳng.
Viết phương trình mặt phẳng (α) đi qua điểm M(2 ; -1 ; 2) và song song với mặt phẳng ( β) có phương trình: 2x - y + 3z + 4 = 0.
Lập phương trình mặt phẳng ( α) đi qua hai điểm A( 1; 0 ; 1), B(5 ; 2 ; 3) và vuông góc với mặt phẳng: 2x - y + z - 7 = 0.
Xác định giá trị của m và n để mỗi cặp mặt phẳng sau đây là một cặp mặt phẳng song song với nhau:
Tính khoảng cách từ điểm A(2 ; 4 ; -3) lần lượt đến các mặt phẳng.
Giải các bài toán sau đây bằng phương pháp tọa độ.
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: