Bài 5 trang 91 SGK Giải tích 12

Bình chọn:
3.6 trên 5 phiếu

Giải bài 5 trang 91 SGK Giải tích 12. Trong các hàm số:

Đề bài

Trong các hàm số:

 \(f(x) = \ln {1 \over {{\mathop{\rm sinx}\nolimits} }},g(x) = \ln {{1 + {\mathop{\rm sinx}\nolimits} } \over {\cos x}},h(x) = \ln {1 \over {\cos x}}\)

Hàm số có đạo hàm là \({1 \over {\cos x}}\) ?

(A) \(f(x)\)                             (B) \(g(x)\)                         

(C) \(h(x)\)                            (D) \(g(x)\) và \(h(x)\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính đạo hàm của hàm hợp: \(\left( {\ln u} \right)' = \frac{{u'}}{u}\) lần lượt tính đạo hàm của các hàm số đã cho và kết luận.

Lời giải chi tiết

Ta có:

\(\begin{array}{l}f\left( x \right) = \ln \frac{1}{{\sin x}} = \ln {\left( {\sin x} \right)^{ - 1}} = - \ln \sin x\\\Rightarrow f'\left( x \right) = - \frac{{\left( {\sin x} \right)'}}{{\sin x}} = \frac{{ - \cos x}}{{\sin x}} = - \cot x\\h\left( x \right) = \ln \frac{1}{{\cos x}} = \ln {\left( {\cos x} \right)^{ - 1}} = - \ln \cos x\\\Rightarrow h'\left( x \right) = - \frac{{\left( {\cos x} \right)'}}{{\cos x}} = - \frac{{ - \sin x}}{{\cos x}} = \tan x\end{array}\)

Do đó, (A), (C) và (D) sai.

Chọn đáp án (B).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Ôn tập Chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu