Bài 2 trang 91 SGK Giải tích 12

Bình chọn:
3.4 trên 5 phiếu

Giải bài 2 trang 91 SGK Giải tích 12. Chọn khẳng định sai trong các khẳng định sau đây:

Đề bài

Chọn khẳng định sai trong các khẳng định sau đây:

(A) \(\ln x > 0 ⇔ x > 1\)

(B) \(\log_2x< 0 ⇔ 0< x < 1\)

(C) \({\log _{{1 \over 3}}}a > {\log _{{1 \over 3}}}b \Leftrightarrow a > b > 0\)

(D) \({\log _{{1 \over 2}}}a = {\log _{{1 \over 2}}}b \Leftrightarrow a = b > 0\)

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp giải bất phương trình logarit cơ bản:

\[{\log _a}f\left( x \right) > {\log _a}g\left( x \right) \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
a > 1\\
f\left( x \right) > g\left( x \right) > 0
\end{array} \right.\\
\left\{ \begin{array}{l}
0 < a < 1\\
0 < f\left( x \right) < g\left( x \right)
\end{array} \right.
\end{array} \right.\]

Lời giải chi tiết

A. \(\ln x > 0 = \ln 1 \Leftrightarrow x > 1\) (do \(e > 1\) ) nên A đúng.

B. \({\log _2}x < 0 = {\log _2}1 \Leftrightarrow 0 < x < 1\) (do \(2>1\) ) nên B đúng.

C. \({\log _{\frac{1}{3}}}a > {\log _{\frac{1}{3}}}b\) \( \Leftrightarrow 0 < a < b\) (do \(0 < \dfrac{1}{3} < 1\)) nên C sai.

D. \({\log _{\frac{1}{2}}}a = {\log _{\frac{1}{2}}}b \Leftrightarrow a = b > 0 \) nên D đúng.

Chọn đáp án C.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.