Câu 3.47 trang 93 sách bài tập Đại số và Giải tích 11 Nâng cao


Cho dãy số

Đề bài

Cho dãy số \(({u_n})\) xác định bởi \({u_1} = 2\) và \({u_{n + 1}} = 4{u_n} + 9\) với mọi \(n \ge 1.\)

Chứng minh rằng dãy số \(({v_n})\), xác định bởi \(({v_n}) = {u_n} + 3\) với mọi \(n \ge 1,\)

Là một cấp số nhân. Hãy xác định số hạng đầu và công bội của cấp số nhân đó.

Lời giải chi tiết

Từ hệ thức xác định dãy số \(({u_n})\) ta có

\({u_{n + 1}} + 3 = 4.\left( {{u_n} + 3} \right)\,\,\forall n \ge 1.\)

Từ đó, theo định nghĩa dãy số \(({v_n})\) ta được \({v_{n + 1}} = 4.{v_n}\) với mọi \(n \ge 1.\) Vì thế, \(({v_n})\) là một cấp số nhân với công bội \(q = 4\) và số hạng đầu \({v_1} = {u_1} + 3 = 2 + 3 = 5\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4. Cấp số nhân

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài