Bài 2.62 trang 70 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 2.62 trang 70 sách bài tập Đại số và Giải tích 11 Nâng cao. Tính tổng của tất cả các số có 5 chữ số được viết từ các số từ các chữ số 1, 2, 3, 4, 5.

Đề bài

Tính tổng của tất cả các số có 5 chữ số được viết từ các số từ các chữ số 1, 2, 3, 4, 5.

Lời giải chi tiết

Tổng

\(S = \sum {\overline {abcde}} \)\(= {{10}^4}\sum a  +  {10^3}\sum b  + {10^2}\sum c\)

\(  + 10\sum d  + \sum {e.} \)

Ta có tổng \(\sum a \) là tổng của 120 số, trong đó mỗi số \(a \in \left\{ {1,2,3,4,5} \right\}\) xuất hiện đúng \(4! = 24\) lần. Vậy \(\sum {a = 24\left( {1 + 2 + 3 + 4 + 5} \right)}  = 360.\)

Tương tự \(\sum {b = \sum {c = \sum {d = \sum e  = 360} } } \)

Vậy \(S = 360.11111 = 3999960\) 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài