Bài 2.62 trang 70 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 2.62 trang 70 sách bài tập Đại số và Giải tích 11 Nâng cao. Tính tổng của tất cả các số có 5 chữ số được viết từ các số từ các chữ số 1, 2, 3, 4, 5.

Đề bài

Tính tổng của tất cả các số có 5 chữ số được viết từ các số từ các chữ số 1, 2, 3, 4, 5.

Lời giải chi tiết

Tổng

\(S = \sum {\overline {abcde}} \)\(= {{10}^4}\sum a  +  {10^3}\sum b  + {10^2}\sum c\)

\(  + 10\sum d  + \sum {e.} \)

Ta có tổng \(\sum a \) là tổng của 120 số, trong đó mỗi số \(a \in \left\{ {1,2,3,4,5} \right\}\) xuất hiện đúng \(4! = 24\) lần. Vậy \(\sum {a = 24\left( {1 + 2 + 3 + 4 + 5} \right)}  = 360.\)

Tương tự \(\sum {b = \sum {c = \sum {d = \sum e  = 360} } } \)

Vậy \(S = 360.11111 = 3999960\) 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí