Câu 2.137 trang 93 sách bài tập Giải tích 12 Nâng cao>
Giải các hệ phương trình sau:
Giải các hệ phương trình sau:
LG a
\(\left\{ \matrix{{5^x}{.2^y} = 500 \hfill \cr {\log _{\sqrt 2 }}\left( {2x - y} \right) = 4 \hfill \cr} \right.\)
Lời giải chi tiết:
Biến đổi phương trình về dạng
\(\left\{ \matrix{ {5^x}{.2^y} = 500 \hfill \cr 2x - y = 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ {5^x}{.2^{2x - 4}} = 500 \hfill \cr y = 2x - 4 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{ {20^x} = {20^3} \hfill \cr y = 2x - 4 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{ x = 3 \hfill \cr y = 2 \hfill \cr} \right.\)
LG b
\(\left\{ \matrix{ {\log _{27}}xy = 3{\log _{27}}x{\log _{27}}y \hfill \cr {\log _3}{x \over y} = {{3{{\log }_3}x} \over {4{{\log }_3}y}} \hfill \cr} \right.\)
Lời giải chi tiết:
Đưa về cùng lôgarit cơ số 3, ta có
\(\left\{ \matrix{{\log _{27}}xy = 3{\log _{27}}x.{\log _{27}}y \hfill \cr{\log _3}{x \over y} = {{3{{\log }_3}x} \over {4{{\log }_3}y}} \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{{\log _3}x + 3{\log _3}y = {\log _3}x{\log _3}y \hfill \cr{\log _3}x - {\log _3}y = {{3{{\log }_3}x} \over {4{{\log }_3}y}} \hfill \cr} \right.\)
Rồi đặt \(u = {\log _3}x,v = {\log _3}y\) ta được hệ phương trình \(\left\{ \matrix{u + v = uv \hfill \cr u - v = {{3u} \over {4v}} \hfill \cr} \right.\)
Giải hệ rồi tìm x, y ta được:
\(\left( {x;y} \right) = \left( {{1 \over 3};\sqrt 3 } \right);(x;y) = (27;3\sqrt 3 )\)
Loigiaihay.com
- Câu 2.138 trang 93 sách bài tập Giải tích 12 Nâng cao
- Câu 2.136 trang 93 sách bài tập Giải tích 12 Nâng cao
- Câu 2.135 trang 93 sách bài tập Giải tích 12 Nâng cao
- Câu 2.134 trang 92 sách bài tập Giải tích 12 Nâng cao
- Câu 2.133 trang 92 sách bài tập Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao