Giải bài 6 trang 80 SGK Hình học 12


Viết phương trình mặt phẳng (α) đi qua điểm M(2 ; -1 ; 2) và song song với mặt phẳng ( β) có phương trình: 2x - y + 3z + 4 = 0.

Đề bài

Viết phương trình mặt phẳng \((α)\) đi qua điểm \(M(2 ; -1 ; 2)\) và song song với mặt phẳng \(( β)\) có phương trình: \(2x - y + 3z + 4 = 0\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Cho hai mặt phẳng: \(\left( P \right)//\left( Q \right)\) thì \(\overrightarrow {{n_P}}  = \overrightarrow {{n_Q}} .\)

+) Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT  \(\overrightarrow n  = \left( {a;\;b;\;c} \right)\) có dạng:  \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)

Lời giải chi tiết

Ta có vectơ \(\overrightarrow{n}(2 ; -1 ; 3)\) là vectơ pháp tuyến của mặt phẳng \((β)\) .

Vì \((α)  // ( β)\) nên \(\overrightarrow{n}\) cũng là vectơ pháp tuyến của mặt phẳng \((α)\) .

Phương trình mặt phẳng \((α)\) có dạng: \(2(x - 2) - (y + 1) + 3(z - 2) = 0\) hay \(2x - y + 3z -11 = 0\).

Cách khác:

Vì mặt phẳng (α) song song với mặt phẳng \(\left( {{\rm{ }}\beta } \right):2x--y + 3z + 4 = 0\) nên phương trình của mp \((α)\) có dạng:

\(2x – y + 3z + D = 0\)

Vì \(M(2; -1; 2) ∈ mp(α)\) nên \({4 + 1 + 6 + D = 0 \Leftrightarrow D =  - 11}\)

Vậy phương trình của  \(mp(α) \) là: \(2x – y + 3z - 11= 0\)

Loigiaihay.com


Bình chọn:
3.9 trên 29 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí