Bài 8 trang 100 SGK Hình học 12

Bình chọn:
3.5 trên 6 phiếu

Giải bài 8 trang 100 SGK Hình học 12. Trong không gian Oxyz cho các điểm A(1; 0 ; -1), B(3 ; 4 ; -2), C(4 ; -1; 1), D(3 ; 0 ;3).

Đề bài

Trong không gian \(Oxyz\) cho các điểm \(A(1; 0 ; -1), B(3 ; 4 ; -2), C(4 ; -1; 1), D(3 ; 0 ;3)\).

a) Chứng minh rằng \(A, B, C, D\) không đồng phẳng.

b) Viết phương trình mặt phẳng \((ABC)\) và tính khoảng cách từ \(D\) đến \((ABC)\).

c) Viết phương trình mặt cầu ngoại tiếp tứ diện \(ABCD\).

d) Tính thể tích tứ diện \(ABCD\).

Phương pháp giải - Xem chi tiết

a) Viết phương trình mặt phẳng (ABC) và chứng minh \(D \notin \left( {ABC} \right)\).

b) Sử dụng công thức tính khoảng cách từ 1 điểm đến một mặt phẳng.

Khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\,\,\left( {{A^2} + {B^2} + {C^2} > 0} \right)\) là: \(d\left( {M;\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\)

c) Gọi phương trình tổng quát của mặt cầu là \({x^2} + {y^2} + {z^2} + 2Ax + 2By + 2Cz + D = 0\).

Thay tọa độ các điểm A, B, C, D vào phương trình mặt cầu trên, suy ra được hệ 4 phương trình 4 ẩn A, B, C, D. Giải hệ phương trình sau đó suy ra phương trình mặt cầu.

d) \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\)

Lời giải chi tiết

a) Ta có \(\overrightarrow {AB} = (2; 4; -1)\), \(\overrightarrow {AC} = (3; -1; 2)\)

Ta có: \( \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] =  (7; -7; -14)=7(1;-1;-2)\)

Gọi \(\overrightarrow n \) là vectơ pháp tuyến của mặt phẳng \((ABC)\) \( \Rightarrow \overrightarrow n  = \left( {1; - 1; - 2} \right)\)

Khi đó phương trình mp \((ABC)\): \((x - 1) - (y - 0) -2(z + 1) = 0 \)

\(\Leftrightarrow x - y - 2z - 3 = 0\).

Thay tọa độ điểm D vào phương trình mặt phẳng (ABC) ta có: \(3 - 0 - 2.3 - 3 =  - 6 \ne 0 \Rightarrow D \notin \left( {ABC} \right)\).

Vậy \(A, B, C, D\) không đồng phẳng.

b) \(d(D, (ABC))\) =\({{\left| {1.3 - 0 - 2.3 - 3} \right|} \over {\sqrt {{1^2} + {1^2} + {{( - 2)}^2}} }} = {6 \over {\sqrt 6 }} = \sqrt 6 \)

c) Phương trình tổng quát của mặt cầu:

\({x^2} + {y^2} + {z^2} + 2Ax + 2By + 2Cz + D = 0\)

Mặt cầu đi qua \(A(1; 0; -1)\) ta có:

\({1^2} + {0^2} + {( - 1)^2} + 2A - 2C + D = 0 \)

\(\Leftrightarrow 2A - 2C + D + 2 = 0 \)(1)

Tương tự, mặt cầu đi qua \(B, C, D\) cho ta các phương trình:

\(6A + 8B - 4C + D + 29 = 0 \)                         (2)

\(8A - 2B + 2C + D + 18 = 0 \)                         (3)

\(6A  + 6C + D + 18 = 0  \)                                    (4)

Hệ bốn phương trình (1), (2), (3), (4) cho ta: \(A = -3; B =- 2; C = {-1 \over 2}; D = 3\).

Vậy hương trình mặt cầu đi qua bốn điểm \(A, B, C, D\) là: \({x^2} + {y^2} + {z^2} -6 x - 4y - z +3 = 0\)

d) Ta có: \(\overrightarrow {AD}  = \left( {2;0;4} \right)\)

\(\Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right].\overrightarrow {AD}  = 7.2 - 7.0 - 14.4 =  - 42\)

Vậy \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = \frac{1}{6}.42 = 7\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - HÌNH HỌC 12

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu