Bài 15 trang 101 SGK Hình học 12

Bình chọn:
3.5 trên 6 phiếu

Giải bài 15 trang 101 SGK Hình học 12. Cho hai đường thẳng chéo nhau.a) Viết phương trình các mặt phẳng (α) và (β) song song với nhau và lần lượt chứa d và d'.

Lựa chọn câu để xem lời giải nhanh hơn

Cho hai đường thẳng chéo nhau

\(d:\,\,\left\{ \begin{array}{l}x = 2 - t\\y = - 1 + t\\z = 1 - t\end{array} \right.\,\,\,\,\,\,\,\,\,d':\,\,\left\{ \begin{array}{l}x = 2 + 2t'\\y = t'\\z = 1 + t'\end{array} \right.\)

LG a

Viết phương trình các mặt phẳng \((α)\) và \((β)\) song song với nhau và lần lượt chứa \(d\) và \(d'\).

Phương pháp giải:

+ Mặt phẳng \((α)\) chính là mặt phẳng chứa \(d\) và song song với \(d'\)

+ Mặt phẳng \(\beta\) chính là mặt phẳng chứa \(d'\) và song song với \(d\)

Giải chi tiết:

Mặt phẳng \((α)\) chính là mặt phẳng chứa \(d\) và song song với \(d'\)

\(d\) có vectơ chỉ phương \(\overrightarrow a  = (-1; 1; -1)\).

\(d'\) có vectơ chỉ phương \(\overrightarrow {a'}  = (2; 1; 1)\)

Vectơ pháp tuyến \(\overrightarrow n \) của \((α)\) vuông góc với \(\overrightarrow a \) và \(\overrightarrow {a'} \) nên: \(\overrightarrow n  = \left[ {\overrightarrow a ;\overrightarrow {a'} } \right] = \left( {2; - 1;3} \right)\)

Đường thẳng \(d\) chứa điểm \(A(2; -1; 1)\). Mặt phẳng \((α)\) chứa \(d\) nên chứa điểm \(A\). Phương trình của \((α)\):

\(2(x - 2) - 1(y + 1) - 3(z - 1) = 0\)

\(\Leftrightarrow  2x - y - 3z - 2 = 0\)

Mặt phẳng \((\beta)\) chính là mặt phẳng chứa \(d'\) và song song với \(d\) nên cũng nhận \(\overrightarrow n  = \left( {2; - 1;3} \right)\) là VTPT và đi qua điểm \(B\left( {2;0;1} \right)\)

Suy ra phương trình mặt phẳng \((β)\): \(2(x-2)-y-3(z-1)=0 \Leftrightarrow  2x - y - 3z - 1 = 0\)

LG b

Lấy hai điểm \(M(2 ; -1 ; 1)\) và \(M'(2 ; 0 ; 1)\) lần lượt trên \(d\) và \(d'\). Tính khoảng cách từ \(M\) đến mặt phẳng \((β)\) và khoảng cách từ \(M'\) đến mặt phẳng \((α)\). So sánh hai khoảng cách đó.

Phương pháp giải:

Sử dụng công thức tính khoảng cách từ 1 điểm đến một mặt phẳng.

Giải chi tiết:

Ta có: \(d (M,(β))\) =\({{\left| {2.2 - 1.( - 1) - 3.1 - 1} \right|} \over {\sqrt {{2^2} + {{( - 1)}^2} + {{( - 3)}^2}} }} = {1 \over {\sqrt {14} }}\)

\(d\left( {M';\left( \alpha  \right)} \right) = \frac{{\left| {2.2 - 1.0 - 3.1 - 2} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 3} \right)}^2}} }} = \frac{1}{{\sqrt {14} }}\)

\(\Rightarrow d(M,(β)) = d(M', (α))\)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - HÌNH HỌC 12

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.

Gửi văn hay nhận ngay phần thưởng