Bài 6 trang 100 SGK Hình học 12

Bình chọn:
3.6 trên 5 phiếu

Giải bài 6 trang 100 SGK Hình học 12. Trong không gian Oxyz cho mặt cầu (S) có phương trình x2 + y2 + z2 = 4a2 (a>0).

Đề bài

Trong không gian \(Oxyz\) cho mặt cầu \((S)\) có phương trình \({x^2} + {\rm{ }}{y^2} + {\rm{ }}{z^2} = {\rm{ }}4{a^{2}}\left( {a > 0} \right)\).

a) Tính diện tích mặt cầu \((S)\) và thể tích của khối cầu tương ứng.

b) Mặt cầu \((S)\) cắt mặt phẳng \((Oxy)\) theo đường tròn \((C)\). Xác định tâm và bán kính của \((C)\).

c) Tính diện tích xung quanh của hình trụ nhận \((C)\) làm đáy và có chiều cao là \(a\sqrt3\). Tính thể tích của khối trụ tương ứng.

Phương pháp giải - Xem chi tiết

a) Xác định tâm và bán kính \(R\) của mặt cầu, sử dụng các công thức tính diện tích và thể tích khối cầu: \(S = 4\pi {R^2};\,\,V = \frac{4}{3}\pi {R^3}\)

b) Phương trình đường tròn \((C)\), giao tuyến của mặt cầu và mặt phẳng \(Oxy\) là:\(\left\{ \matrix{
{x^2} + {y^2} + {z^2} = 4{a^2} \hfill \cr z = 0 \hfill \cr} \right.\). Suy ra tâm và bán kính của đường tròn đó.

c) Sử dụng các công thức tính diện tích xung quanh và thể tích của khối trụ: \({S_{xq}} = 2\pi rh;\,\,V = \pi {r^2}h\), trong đó \(r;h\) lần lượt là bán kính đáy và chiều cao của khối trụ.

Lời giải chi tiết

a) Mặt cầu \((S)\) có tâm là gốc toạ độ \(O\) và bán kính \(R = 2a\) nên có

\(S = 16πa^2\) ; \(V ={{32\pi {a^2}} \over 3}\)

b) Phương trình đường tròn \((C)\), giao tuyến của mặt cầu và mặt phẳng \(Oxy\) là: \(\left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} = 4{a^2}\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} = 4{a^2}\\z = 0\end{array} \right.\)

Từ đây suy ra mặt phẳng \(z = 0\) cắt mặt cầu theo đường tròn \((C)\) có tâm là gốc toạ độ \(O\) và bán kính là \(2a\).

c) Hình trụ có đáy là đường tròn \((C)\) và chiều cao \(a\sqrt3\) có:

\(S_{xq} = 2π.(2a).a\sqrt3\)   \( \Rightarrow  S_{xq}= 4πa^2\sqrt3\)

\(V = π(2a)^2.a\sqrt3\)        \( \Rightarrow  V = 4πa^3\sqrt3\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - HÌNH HỌC 12

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.